St. Andrews State Park Aquatic Preserve SEACAR Habitat Analyses

Last compiled on 08 January, 2025

Contents	
Funding & Acknowledgements	2
Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Water Quality - Discrete Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality Colored Dissolved Organic Matter - Discrete Water Quality Dissolved Oxygen - Discrete Water Quality Dissolved Oxygen Saturation - Discrete Water Quality PH - Discrete Water Quality Salinity - Discrete Water Quality Yotal Nitrogen - Discrete Water Quality Yotal Phosphorus - Discrete Water Quality Yotal Suspended Solids - Discrete Water Quality Yurbidity - Discrete Water Quality Yotal Suspended Solids - Discrete Water Quality Yurbidity - Discrete W	7 0 1 4 5 8 0 2 4 6 8
Parameters 3 Species 3 Notes 3	4

Funding & Acknowledgements

The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.

With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.

Published: 2025-01-08

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (*FDEP*) Division of Environmental Assessment and Restoration (*DEAR*) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (*QAQC*) Flags are inserted into the *SEACAR_QAQCFlagCode* and *SEACAR_QAQC_Description* columns of the export data. The *Include* column indicates whether the *QAQC* Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the *Include* column to exclude data (1 to include, 0 to exclude).

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	$\mathrm{mg/L}$	-0.000001	50
Dissolved Oxygen Saturation	%	-0.000001	500
Salinity	ppt	-0.000001	70
Turbidity	NTU	-0.000001	4000
Water Temperature	Degrees C	-5.000000	45
pH	None	2.000000	14

Table 1: Continuous Water Quality threshold values

Table 2: 1	Discrete W	Vater Q	uality the	reshold v	alues

Parameter Name	Units	Low Threshold	High Threshold
Ammonia, Un-ionized (NH3)	mg/L	-	-
Ammonium, Filtered (NH4)	mg/L	-	-
Chlorophyll a, Corrected for Pheophytin	$\rm ug/L$	-	-
Chlorophyll a, Uncorrected for Pheophytin	$\mathrm{ug/L}$	-	-
Colored Dissolved Organic Matter	PCU	-	-

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	25
Dissolved Oxygen Saturation	%	-0.000001	310
Fluorescent Dissolved Organic Matter	QSE	-	-
Light Extinction Coefficient	m^-1	-	-
NO2+3, Filtered	$\mathrm{mg/L}$	-	-
Nitrate (NO3)	$\mathrm{mg/L}$	-	-
Nitrite (NO2)	m mg/L	-	-
Nitrogen, organic	m mg/L	-	-
Phosphate, Filtered (PO4)	$\mathrm{mg/L}$	-	-
Salinity	ppt	-0.000001	70
Secchi Depth	m	0.000001	50
Specific Conductivity	$\mathrm{mS/cm}$	0.005000	100
Total Kjeldahl Nitrogen	mg/L	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Phosphorus	$\mathrm{mg/L}$	-	-
Total Suspended Solids	mg/L	-	-
Turbidity	NTU	-	-
Water Temperature	Degrees C	3.000000	40
рН	None	2.000000	13

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 and 2

SEACAR QAQC Description	Include	$SEACAR \ QAQCFlagCode$
Exceeds maximum threshold	0	2Q
Below minimum threshold	0	4Q
Within threshold tolerance	1	6Q
No defined thresholds for this parameter	1	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from *STORET* and *WIN* data are examined with the database and used to populate the *Include* column in data exports.

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	0	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	0	0	Estimated value
STORET-WIN	V	0	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	0	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Table 4: Value Qualifier codes excluded from analysis

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - *Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network* and data flagged with Value Qualifier **H** are included for this program only.

 \mathbf{H} - Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.

 ${\bf I}$ - The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.

 \mathbf{Q} - Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.

 ${f S}$ - Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.

U - Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the *SWMP* continuous program are examined with the database and used to populate the *Include* column in data exports. *SWMP* Qualifier Codes are indicated by *QualifierSource=SWMP*.

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	Yes	Optional parameter not collected
SWMP	-2	No	Missing data
SWMP	-3	No	Data rejected due to QA/QC
SWMP	-4	No	Outside low sensor range
SWMP	-5	No	Outside high sensor range
SWMP	0	Yes	Passed initial QA/QC checks
SWMP	1	No	Suspect data
SWMP	2	Yes	Reserved for future use
SWMP	3	Yes	Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
SWMP	4	Yes	Historical: Pre-auto QA/QC
SWMP	5	Yes	Corrected data

Table	$5 \cdot$	SWMP	Value	Qualifier	codes
rabic	υ.	D VV IVII	varue	Quanner	coucs

Water Column

The water column habitat extends from the water's surface to the bottom sediments, and it's where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.

SEACAR evaluates water column health with several essential parameters. These include nutrient surveys of nitrogen and phosphorus, andwater quality assessments of salinity, dissolved oxygen, pH, and water temperature. Water clarity is evaluated with Secchi depth, turbidity, levels of chlorophyll a, total suspended solids, and colored dissolved organic matter. Additionally, the richness of nekton is indicated by the abundance of free-swimming fishes and macroinvertebrates like crabs and shrimps.

Seasonal Kendall-Tau Analysis

Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as "Significant Trend" (when p < 0.05), or "Non-significant Trend" (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.

Water Quality - Discrete

The following files were used in the discrete analysis:

- $\bullet \ \ Combined_WQ_WC_NUT_Chlorophyll_a_corrected_for_pheophytin-2024-Dec-08.txt\\$
- Combined_WQ_WC_NUT_Chlorophyll_a_uncorrected_for_pheophytin-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen_Saturation-2024-Dec-08.txt
- Combined_WQ_WC_NUT_pH-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Salinity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Secchi_Depth-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Nitrogen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Phosphorus-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Turbidity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Water_Temperature-2024-Dec-08.txt

Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

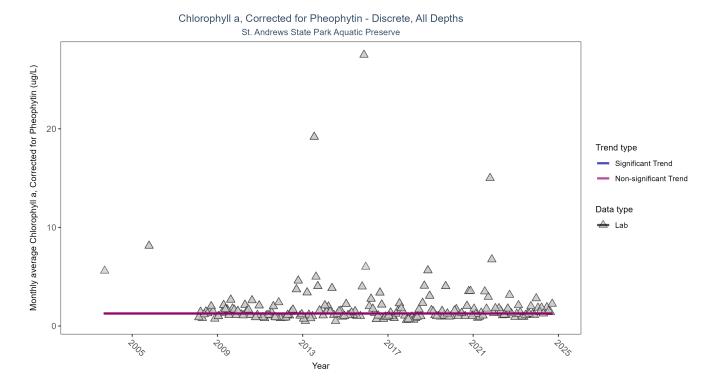


Figure 1: Seasonal Kendall-Tau Results for Chlorophyll a, Corrected for Pheophytin - Discrete

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	850	19	1.2	TRUE	0.0022	0.9893	-0.0001	1.2718	15.1158	0.1773	0



Figure 2: Map showing location of Discrete sampling sites for Chlorophyll a, Corrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
470	707	2003	2024
5002	84	2010	2016
514	67	2018	2024

 Table 7: Programs contributing data for Chlorophyll a, Corrected for Pheophytin

Program names:

470- St. Andrews Aquatic Preserve Water Quality Monitoring^1514- Florida LAKEWATCH Program²5002- Florida STORET / WIN³

Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

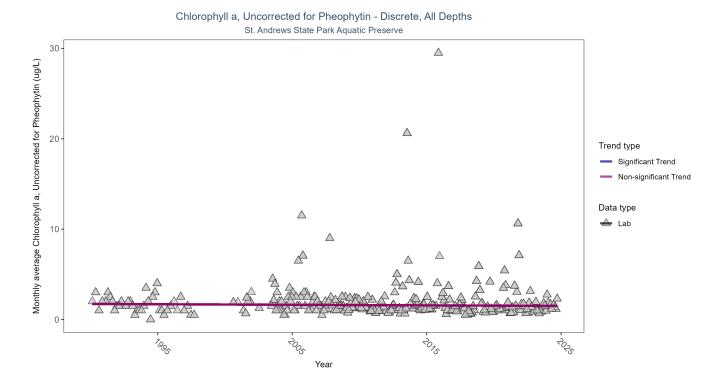


Figure 3: Seasonal Kendall-Tau Results for Chlorophyll a, Uncorrected for Pheophytin - Discrete

Table 8: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Uncorrected for Pheophytin

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	1249	33	1.3	TRUE	-0.0783	0.0872	-0.0064	1.7209	7.1838	0.784	0

Figure 4: Map showing location of Discrete sampling sites for Chlorophyll a, Uncorrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
470	782	2000	2024
514	438	1990	2024
103	64	2000	2021
5002	22	2010	2012
115	4	2000	2003
118	2	2000	2001

 Table 9: Programs contributing data for Chlorophyll a, Uncorrected for Pheophytin

- 115 Environmental Monitoring Assessment $\rm Program^5$
- 118 National Aquatic Resource Surveys, National Coastal Condition $\operatorname{Assessment}^6$
- 470 St. And rews Aquatic Preserve Water Quality Monitoring^1
- 514 Florida LAKEWATCH Program²
- 5002 Florida STORET / WIN^3

Colored Dissolved Organic Matter - Discrete Water Quality

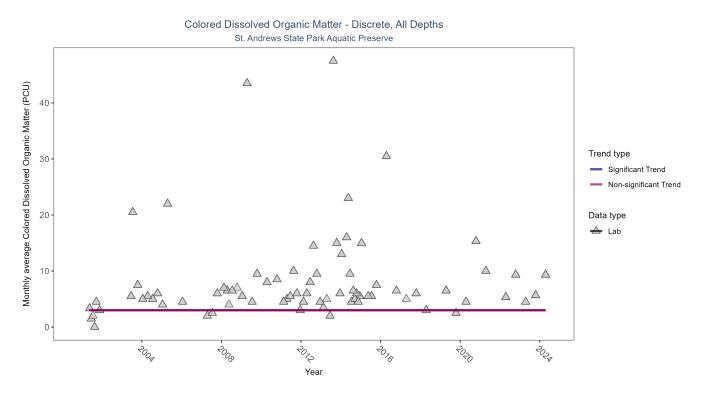


Figure 5: Seasonal Kendall-Tau Results for Colored Dissolved Organic Matter - Discrete

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	161	23	6	TRUE	0.178	0.8787	0	3	12.6995	0.241	0

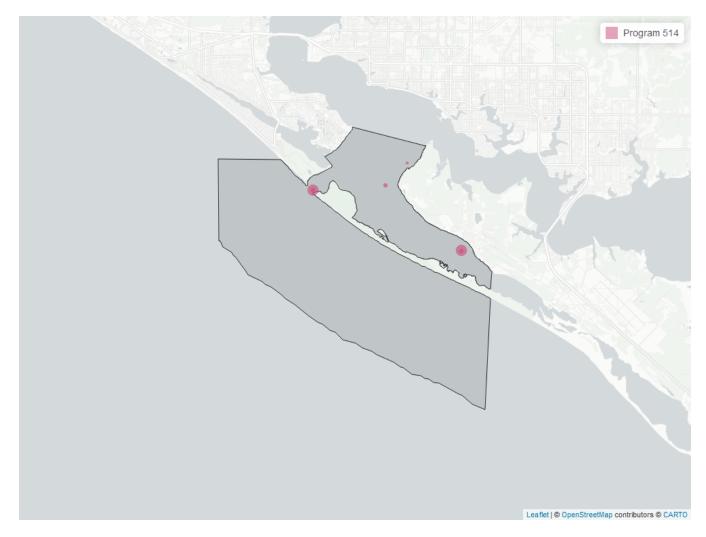


Figure 6: Map showing location of Discrete sampling sites for Colored Dissolved Organic Matter. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
514	161	2001	2024

Table 11: Programs contributing data for Colored Dissolved Organic Matter

Program names:

514- Florida LAKEWATCH $\rm Program^2$

Dissolved Oxygen - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

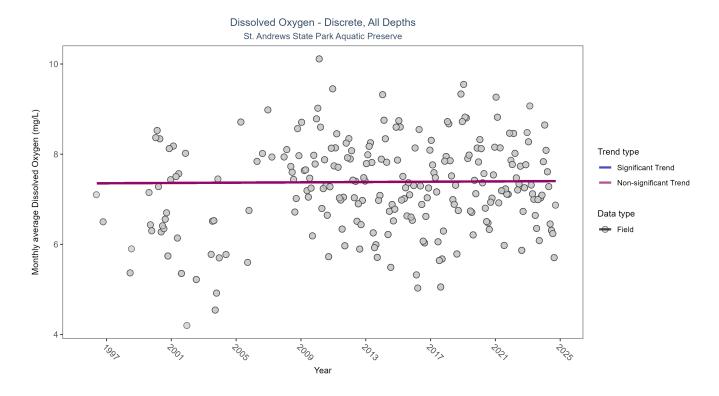


Figure 7: Seasonal Kendall-Tau Results for Dissolved Oxygen - Discrete

Table 12: Seasonal k	Kendall-Tau Tren	d Analysis for	Dissolved	Oxygen
----------------------	------------------	----------------	-----------	--------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	2840	28	7.165	TRUE	0.0164	0.7277	0.0017	7.3533	10.7479	0.4646	0

Figure 8: Map showing location of Discrete sampling sites for Dissolved Oxygen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
470	819	2000	2024
69	651	2001	2022
5002	621	2005	2024
95	498	1996	2018
557	243	2016	2023
103	22	2003	2021
115	17	2000	2003
118	2	2000	2001

Table 13: Programs contributing data for Dissolved Oxygen

- 69 Fisheries-Independent Monitoring (FIM) Program⁷
- 95 Harmful Algal Bloom Marine Observation $\rm Network^8$
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴
- 115 Environmental Monitoring Assessment $\rm Program^5$
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁶

470- St. Andrews Aquatic Preserve Water Quality Monitoring^1557- Central Panhandle Aquatic Preserves Seagrass Monitoring^95002- Florida STORET / WIN^3

Dissolved Oxygen Saturation - Discrete Water Quality

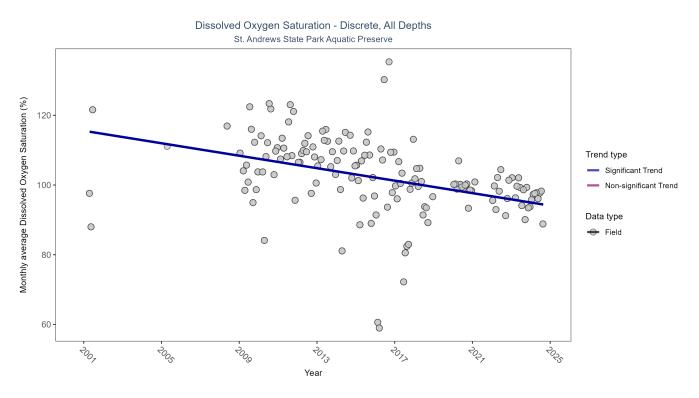


Figure 9: Seasonal Kendall-Tau Results for Dissolved Oxygen Saturation - Discrete

Table 14: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen Saturation

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	901	18	101.9	TRUE	-0.3978	0	-0.895	115.5735	5.1913	0.9215	-1

Figure 10: Map showing location of Discrete sampling sites for Dissolved Oxygen Saturation. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	395	2005	2024
470	356	2001	2015
95	161	2015	2018

Table 15: Programs contributing data for Dissolved Oxygen Saturation

Program names:

95- Harmful Algal Bloom Marine Observation Network^8
 470- St. Andrews Aquatic Preserve Water Quality Monitoring
15002- Florida STORET / WIN^3

pH - Discrete Water Quality

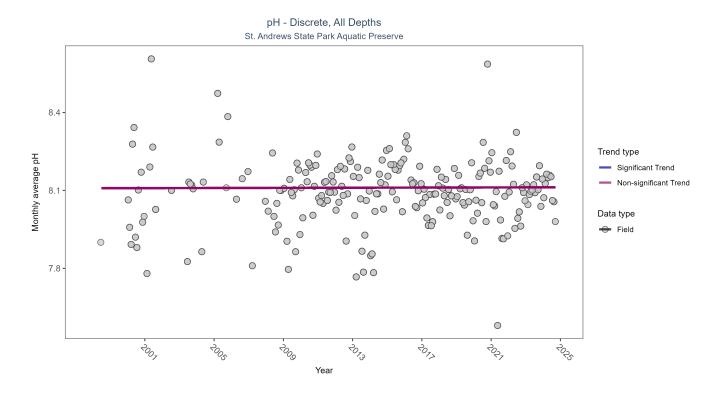


Figure 11: Seasonal Kendall-Tau Results for pH - Discrete

Table 16:	Seasonal	Kendall-Tau	Trend	Analysis	for pH
-----------	----------	-------------	-------	----------	--------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	2713	26	8.1	TRUE	0.013	0.8718	0.0001	8.1083	15.9879	0.1416	0

Figure 12: Map showing location of Discrete sampling sites for pH. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
470	840	2000	2024
69	629	2001	2022
5002	621	2005	2024
95	442	1998	2018
557	234	2016	2023
103	20	2021	2021
115	17	2000	2003

Table 17: Programs contributing data for pH

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 95- Harmful Algal Bloom Marine Observation Network^8
- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^4
- 115 Environmental Monitoring Assessment $\rm Program^5$
- 470 St. And rews Aquatic Preserve Water Quality $\rm Monitoring^1$

557- Central Panhandle Aquatic Preserves Seagrass Monitoring
95002- Florida STORET / WIN^3

Salinity - Discrete Water Quality

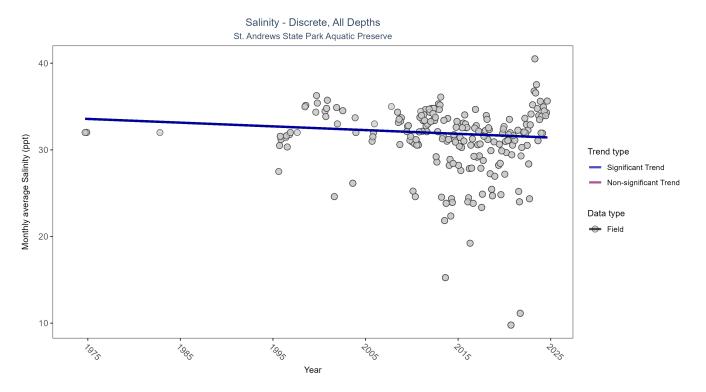


Figure 13: Seasonal Kendall-Tau Results for Salinity - Discrete

Table 18:	Seasonal	Kendall-Tau	Trend	Analysis	for	Salinity

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	2558	30	31.8	TRUE	-0.091	0.0378	-0.043	33.6139	13.8498	0.2414	-1

Figure 14: Map showing location of Discrete sampling sites for Salinity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	Y ear Max
69	652	2001	2022
5002	628	2005	2024
95	594	1974	2018
470	444	2000	2018
557	229	2016	2023
115	17	2000	2003
103	3	2003	2003

Table 19: Programs contributing data for Salinity

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 95- Harmful Algal Bloom Marine Observation Network^8
- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^4
- 115 Environmental Monitoring Assessment ${\rm Program}^5$
- 470 St. And rews Aquatic Preserve Water Quality $\rm Monitoring^1$

557- Central Panhandle Aquatic Preserves Seagrass Monitoring
95002- Florida STORET / WIN^3

Secchi Depth - Discrete Water Quality

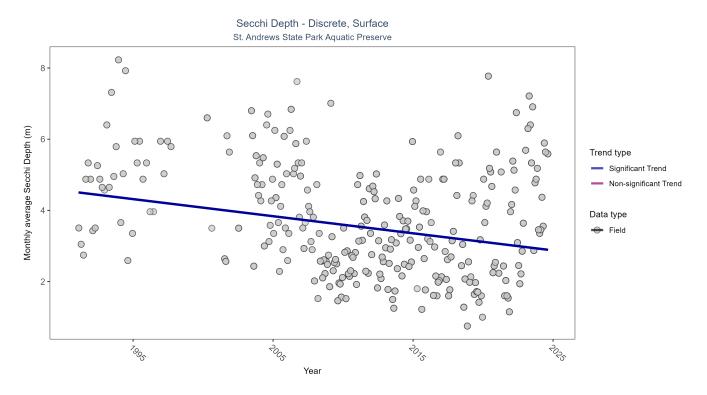


Figure 15: Seasonal Kendall-Tau Results for Secchi Depth - Discrete

Table 20 ·	Seasonal	Kendall-Tau	Trend	Analysis	for	Secchi	Depth
14010 20.	Scasonar	renuali rau	riona	1 mary 515	101	DCCCIII	Dopun

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
Surface	2186	32	2.6	TRUE	-0.1701	0	-0.048	4.5092	19.2126	0.0574	-1

Figure 16: Map showing location of Discrete sampling sites for Secchi Depth. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
69	651	2001	2022
5002	579	2010	2024
514	482	1991	2024
470	356	2000	2015
557	116	2016	2023
115	3	2000	2002

Table 21: Programs contributing data for Secchi Depth

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 115 Environmental Monitoring Assessment $\rm Program^5$
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring^1
- $514\,$ Florida LAKEWATCH $\rm Program^2$
- 557- Central Panhandle Aquatic Preserves Seagrass Monitoring 9
- 5002 Florida STORET / $\rm \bar{W}IN^3$

Total Nitrogen - Discrete Water Quality

Total Nitrogen Calculation:

The logic for calculated Total Nitrogen was provided by Kevin O'Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.

- 1) TN = TKN + NO3O2;
- 2) TN = TKN + NO3 + NO2;
- 3) TN = ORGN + NH4 + NO3O2;
- 4) TN = ORGN + NH4 + NO2 + NO3;
- 5) TN = TKN + NO3;
- 6) TN = ORGN + NH4 + NO3;

Additional Information:

- Rules for use of sample fraction:
 - Florida Department of Environmental Protection (FDEP) report that if both "Total" and "Dissolved" components are reported, only "Total" is used. If the total is not reported, then the dissolved components are used as a best available replacement.
 - Total nitrogen calculations are done using nitrogen components with the same sample fraction, nitrogen components with mixed total/dissolved sample fractions are not used. In other words, total nitrogen can be calculated when TKN and NO3O2 are both total sample fractions, or when both are dissolved sample fractions. *Future calculations of total nitrogen values may be based on components with mixed sample fractions.*
- Values inserted into data:
 - ParameterName = "Total Nitrogen"
 - SEACAR_QAQCFlagCode = "1Q"
 - SEACAR_QAQC_Description = "SEACAR Calculated"

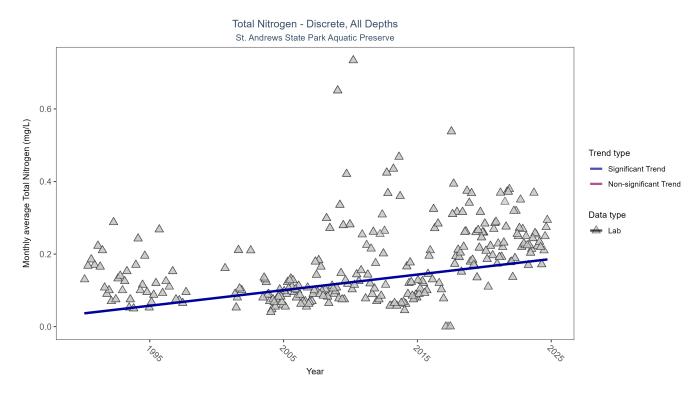


Figure 17: Seasonal Kendall-Tau Results for Total Nitrogen - Discrete

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	1139	33	0.18	TRUE	0.3394	0	0.0043	0.0362	4.3251	0.9594	1

Figure 18: Map showing location of Discrete sampling sites for Total Nitrogen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
514	440	1990	2024
5002	350	1990	2016
470	342	2007	2024
103	12	2000	2003
115	4	2000	2003

Table 23: Programs contributing data for Total Nitrogen

Program names:

- 115 Environmental Monitoring Assessment $\rm Program^5$
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹
- $514\,$ Florida LAKEWATCH $\rm Program^2$
- 5002 Florida STORET / WIN^3

Total Phosphorus - Discrete Water Quality

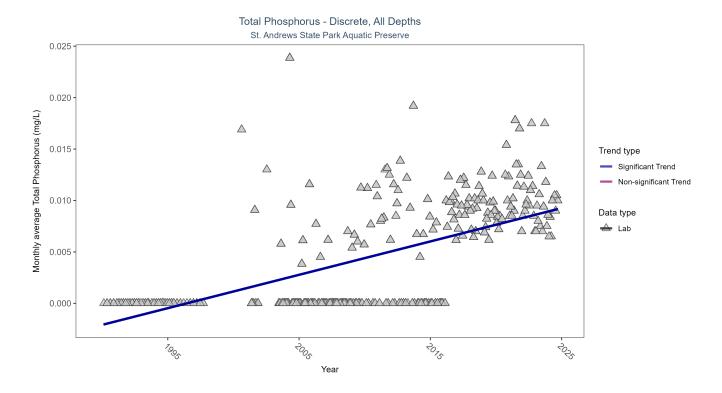


Figure 19: Seasonal Kendall-Tau Results for Total Phosphorus - Discrete

Table 24: Seasonal Kendall-Tau Trend Analysis for Total Phosphorus

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	983	33	0.008	TRUE	0.4635	0	0.0003	-0.0021	10.0216	0.5284	1

Figure 20: Map showing location of Discrete sampling sites for Total Phosphorus. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
470	508	2004	2024
514	442	1990	2024
103	38	2000	2021
5002	22	2010	2012
115	4	2000	2003

Table 25: Programs contributing data for Total Phosphorus

Program names:

- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^4
- 115 Environmental Monitoring Assessment $\rm Program^5$
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹
- $514\,$ Florida LAKEWATCH $\rm Program^2$
- 5002 Florida STORET / WIN^3

Total Suspended Solids - Discrete Water Quality

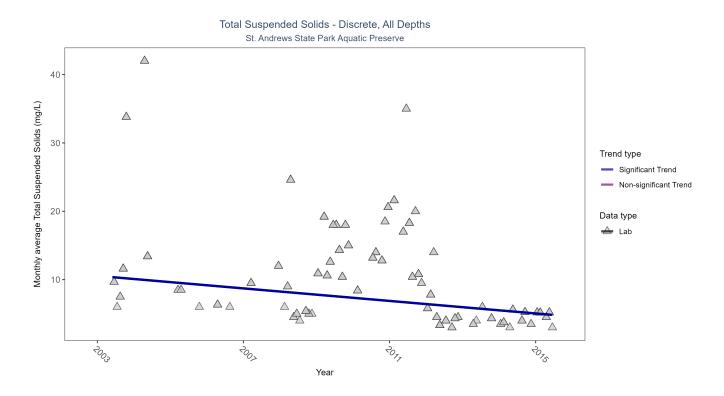


Figure 21: Seasonal Kendall-Tau Results for Total Suspended Solids - Discrete

Table 26: Seasonal Kendall-Tau Trend Analysis for Total Suspended Solids

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	263	13	9	TRUE	-0.2373	0.004	-0.4583	10.5528	13.9954	0.2332	-1

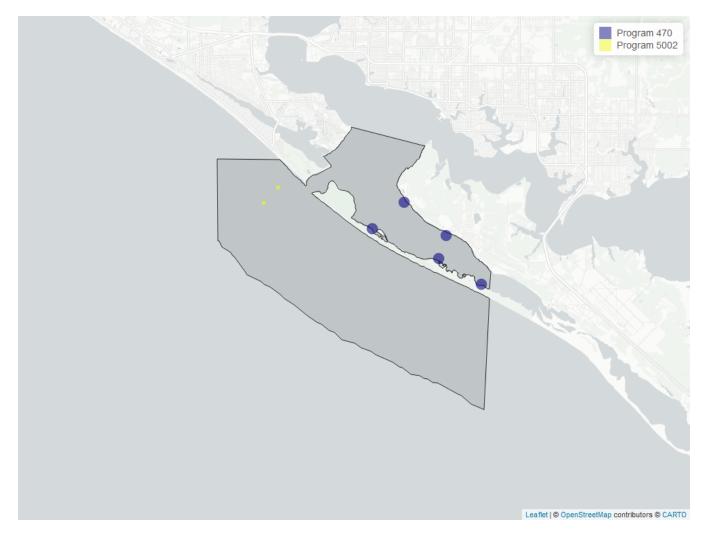


Figure 22: Map showing location of Discrete sampling sites for Total Suspended Solids. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
470	321	2000	2015
5002	18	2010	2012

Table 27: Programs contributing data for Total Suspended Solids

Program names:

470 - St. Andrews Aquatic Preserve Water Quality Monitoring^15002 - Florida STORET / WIN^3

Turbidity - Discrete Water Quality

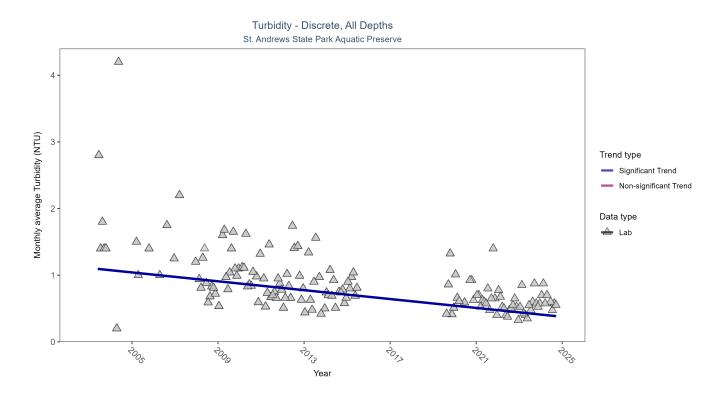


Figure 23: Seasonal Kendall-Tau Results for Turbidity - Discrete

Table 28:	Seasonal	Kendall-Tau	Trend	Analysis	for	Turbidity

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	620	19	0.75	TRUE	-0.4407	0	-0.0333	1.1078	14.6166	0.2007	-1

Figure 24: Map showing location of Discrete sampling sites for Turbidity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
470	676	2000	2024
5002	460	2005	2024
557	188	2016	2023
103	20	2021	2021

Table 29: Programs contributing data for Turbidity

Program names:

- 470 St. Andrews Aquatic Preserve Water Quality Monitoring^1
- 557- Central Panhandle Aquatic Preserves Seagrass Monitoring 9
- 5002 Florida STORET / WIN^3

Water Temperature - Discrete Water Quality

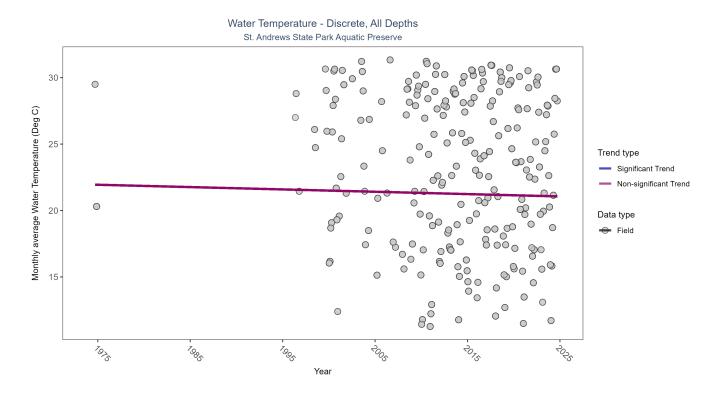


Figure 25: Seasonal Kendall-Tau Results for Water Temperature - Discrete

Table 30: S	Seasonal	Kendall-	Tau	Trend	Analysis	for	Water	Temperature

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	2918	29	25.305	TRUE	-0.0599	0.1804	-0.0176	21.9573	9.426	0.5826	0

Figure 26: Map showing location of Discrete sampling sites for Water Temperature. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
470	839	2000	2024
69	655	2001	2022
5002	627	2005	2024
95	530	1974	2018
557	231	2016	2023
103	21	2003	2021
115	17	2000	2003

Table 31: Programs contributing data for Water Temperature

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 95- Harmful Algal Bloom Marine Observation Network^8
- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^4
- 115 Environmental Monitoring Assessment $\rm Program^5$
- 470 St. And rews Aquatic Preserve Water Quality $\rm Monitoring^1$

- Central Panhandle Aquatic Preserves Seagrass Monitoring
95002- Florida STORET / WIN^3

Submerged Aquatic Vegetation

The data file used is: All_SAV_Parameters-2024-Dec-08.txt

Submerged aquatic vegetation (SAV) refers to plants and plant-like macroalgae species that live entirely underwater. The two primary categories of SAV inhabiting Florida estuaries are *benthic macroalgae* and *seagrasses*. They often grow together in dense beds or meadows that carpet the seafloor. *Macroalgae* include multicellular species of green, red and brown algae that often live attached to the substrate by a holdfast. They tend to grow quickly and can tolerate relatively high nutrient levels, making them a threat to seagrasses and other benthic habitats in areas with poor water quality. In contrast, *seagrasses* are grass-like, vascular, flowering plants that are attached to the seafloor by extensive root systems. *Seagrasses* occur throughout the coastal areas of Florida, including protected bays and lagoons as well as deeper offshore waters on the continental shelf. *Seagrasses* have taken advantage of the broad, shallow shelf and clear water to produce two of the most extensive seagrass beds anywhere in continental North America.

Parameters

Percent Cover measures the fraction of an area of seafloor that is covered by SAV, usually estimated by evaluating multiple small areas of seafloor. Percent cover is often estimated for total SAV, individual types of vegetation (seagrass, attached algae, drift algae) and individual species.

Frequency of Occurrence was calculated as the number of times a taxon was observed in a year divided by the number of sampling events, multiplied by 100. Analysis is conducted at the quadrat level and is inclusive of all quadrats (i.e., quadrats evaluated using Braun-Blanquet, modified Braun-Blanquet, and percent cover."

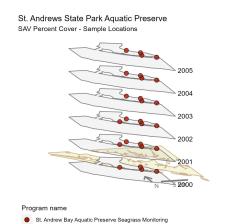
Species

Turtle grass (*Thalassia testudinum*) is the largest of the Florida seagrasses, with longer, thicker blades and deeper root structures than any of the other seagrasses. It is considered a climax seagrass species.

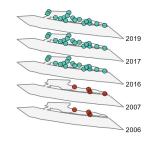
Shoal grass (*Halodule wrightii*) is an early colonizer of vegetated areas and usually grows in water too shallow for other species except *widgeon grass*. It can often tolerate larger salinity ranges than other seagrass species. *Shoal grass* is characterized by thin, flat blades, that are narrower than *turtle grass* blades.

Manatee grass (*Syringodium filiforme*) is easily recognizable because its leaves are thin and cylindrical instead of the flat, ribbon-like form shared by many other seagrass species. The leaves can grow up to half a meter in length. *Manatee grass* is usually found in mixed seagrass beds or small, dense monospecific patches.

Widgeon grass (*Ruppia maritima*) grows in both fresh and salt water and is widely distributed throughout Florida's estuaries in less saline areas, particularly in inlets along the east coast. This species resembles *shoal grass* in certain environments but can be identified by the pointed tips of its leaves.


Three species of *Halophila spp.* are found in Florida - **Star grass** (*Halophila engelmannii*), **Paddle grass** (*Halophila decipiens*), and **Johnson's seagrass** (*Halophila johnsonii*). These are smaller, more fragile seagrasses than other Florida species and are considered ephemeral. They grow along a single long rhizome, with short blades. These species are not well-studied, although surveys are underway to define their ecological roles.

Notes


Star grass, Paddle grass, and Johnson's seagrass will be grouped together and listed as Halophila spp. in the following managed areas. This is because several surveys did not specify to the species level:

- Banana River Aquatic Preserve
- Indian River-Malabar to Vero Beach Aquatic Preserve
- Indian River-Vero Beach to Ft. Pierce Aquatic Preserve
- Jensen Beach to Jupiter Inlet Aquatic Preserve
- Loxahatchee River-Lake Worth Creek Aquatic Preserve
- Mosquito Lagoon Aquatic Preserve

- Biscayne Bay Aquatic Preserve
- Florida Keys National Marine Sanctuary

Central Panhandle Aquatic Preserves Seagrass Monitoring

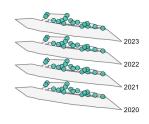
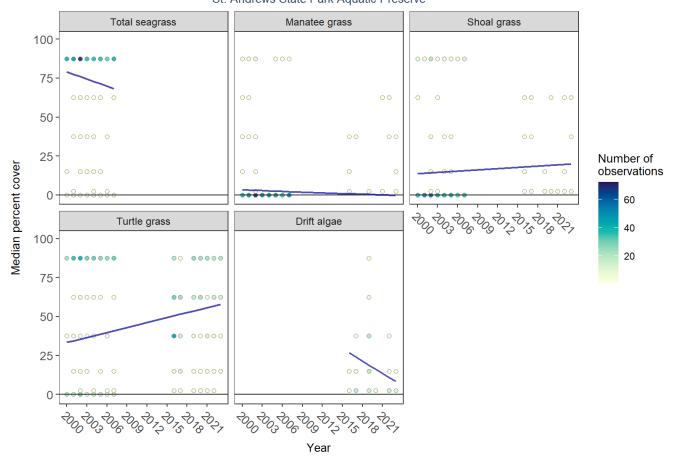


Figure 27: Maps showing the temporal scope of SAV sampling sites within the boundaries of *St. Andrews State Park Aquatic Preserve* by Program name.

Sampling locations by Program:


Figure 28: Map showing SAV sampling sites within the boundaries of *St. Andrews State Park Aquatic Preserve*. The point size reflects the number of samples at a given sampling site.

N-Data	YearMin	Y ear Max	method	Sample Locations
1652	2000	2007	Percent Cover	5

Table 32: St. Andrew Bay Aquatic Preserve Seagrass Monitoring - Program 556

Table 33: Central Panhandle Aquatic Preserves Seagrass Monitoring - Program 557

N-Data	YearMin	Y ear Max	method	Sample Locations
703	2016	2023	Braun Blanquet	17

Median percent cover St. Andrews State Park Aquatic Preserve

Figure 29: Trends in median percent cover for various seagrass species in St. Andrews State Park Aquatic Preserve

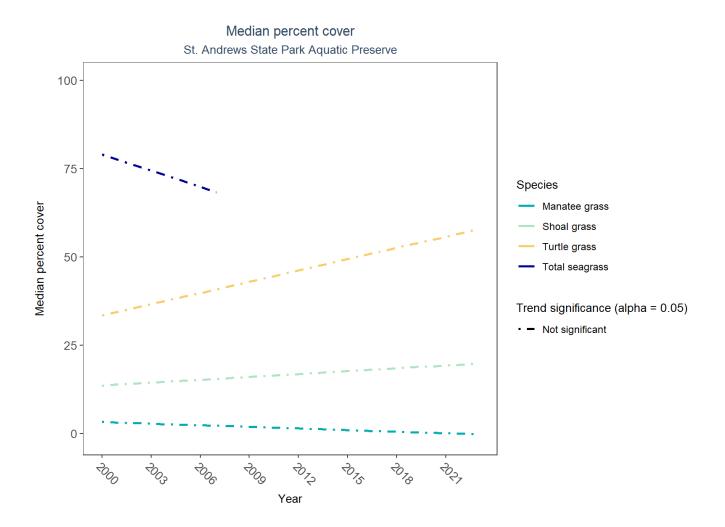


Figure 30: Trends in median percent cover for various seagrass species in St. Andrews State Park Aquatic Preserve - simplified

CommonName	Trend Significance (0.05)	Period of Record	LME-Intercept	$LME ext{-}Slope$	p
Drift algae	No significant trend	2016 - 2023	84.424088	-2.6242582	0.0740365
Shoal grass	No significant trend	2000 - 2023	11.986980	0.2705287	0.4854922
No grass in quadrat	Model did not fit the available data	2016 - 2023	-	-	-
Manatee grass	No significant trend	2000 - 2023	4.172882	-0.1513992	0.8195877
Turtle grass	No significant trend	2000 - 2023	27.038970	1.0624914	0.1315360
Total seagrass	No significant trend	2000 - 2007	88.135881	-1.5226783	0.1502348

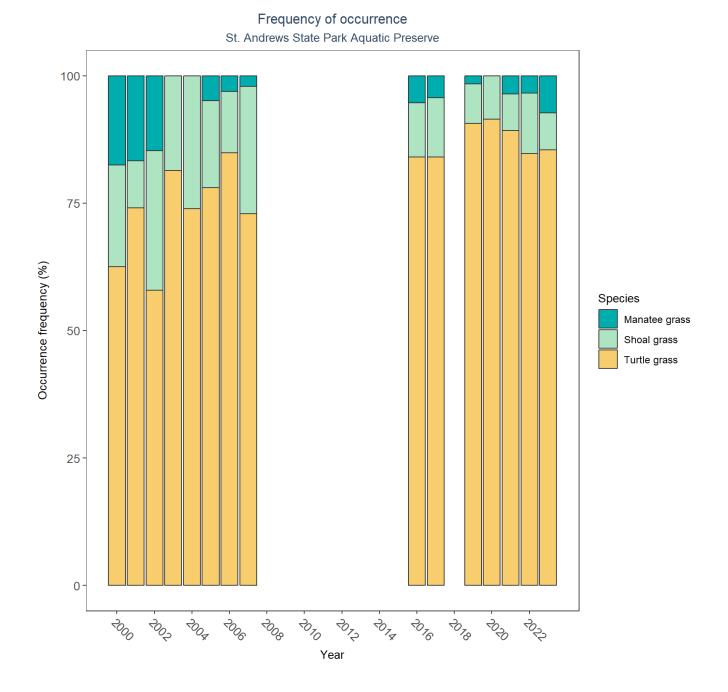


Figure 31: Frequency of occurrence for various seagrass species in St. Andrews State Park Aquatic Preserve

References

- 1. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Central Panhandle Aquatic Preserves. St. Andrews Aquatic Preserve Water Quality Monitoring. (2024).
- 2. University of Florida (UF); Institute of Food and Agricultural Sciences. Florida LAKEWATCH Program. (2024).
- 3. Florida Department of Environmental Protection (DEP). Florida STORET / WIN. (2024).
- 4. U.S. Environmental Protection Agency (EPA). EPA STOrage and RETrieval Data Warehouse (STORET)/WQX. (2023).
- 5. U.S. Environmental Protection Agency (EPA); Office of Research and Development. Environmental Monitoring Assessment Program. (2004).
- 6. U.S. Environmental Protection Agency (EPA); Office of Water; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); National Estuary Program (NEP); coastal states. National Aquatic Resource Surveys, National Coastal Condition Assessment. (2021).
- 7. Florida Fish and Wildlife Conservation Commission (FWC). Fisheries-Independent Monitoring (FIM) Program. (2022).
- 8. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). Harmful Algal Bloom Marine Observation Network. (2018).
- 9. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Central Panhandle Aquatic Preserves. Central Panhandle Aquatic Preserves Seagrass Monitoring. (2023).