St. Andrews Aquatic Preserve SEACAR Habitat Analyses

Last compiled on 08 October, 2025

Contents

Funding & Acknowledgements	2
Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Water Quality - Discrete	5
Chlorophyll a, Corrected for Pheophytin - Discrete	
Chlorophyll a, Uncorrected for Pheophytin - Discrete	
Colored Dissolved Organic Matter - Discrete	
Dissolved Oxygen - Discrete	
Dissolved Oxygen Saturation - Discrete	
pH - Discrete	
Salinity - Discrete	18
Secchi Depth - Discrete	20
Total Nitrogen - Discrete	22
Total Phosphorus - Discrete	24
Total Suspended Solids - Discrete	26
Turbidity - Discrete	
Water Temperature - Discrete	30
Submerged Aquatic Vegetation	34
Parameters	34
Species	34
Notes	34
SAV Water Column Analysis	36
Species list	41
D - f	45

Funding & Acknowledgements

The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.

With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.

Published: 2025-10-08

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (FDEP) Division of Environmental Assessment and Restoration (DEAR) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (QAQC) Flags are inserted into the $SEACAR_QAQCFlagCode$ and $SEACAR_QAQC_Description$ columns of the export data. The Include column indicates whether the QAQC Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the Include column to exclude data (1 to include, 0 to exclude).

Table 1: Continuous Water Quality threshold values

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	$\mathrm{mg/L}$	-0.000001	50
Dissolved Oxygen Saturation	%	-0.000001	500
Salinity	ppt	-0.000001	70
Turbidity	NTU	-0.000001	4000
Water Temperature	Degrees C	-5.000000	45
рН	None	2.000000	14

Table 2: Discrete Water Quality threshold values

Parameter Name	Units	Low Threshold	High Threshold
Ammonia, Un-ionized (NH3)	mg/L	-	-
Ammonium, Filtered (NH4)	$\mathrm{mg/L}$	-	-
Chlorophyll a, Corrected for Pheophytin	ug/L	-	-
Chlorophyll a, Uncorrected for Pheophytin	ug/L	-	-
Colored Dissolved Organic Matter	PCU	-	-

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	25
Dissolved Oxygen Saturation	%	-0.000001	310
Fluorescent Dissolved Organic Matter	QSE	-	-
Light Extinction Coefficient	m^-1	-	-
NO2+3, Filtered	$\mathrm{mg/L}$	-	-
Nitrate (NO3)	$\mathrm{mg/L}$	-	-
Nitrite (NO2)	$\mathrm{mg/L}$	-	-
Nitrogen, organic	$\mathrm{mg/L}$	-	-
Phosphate, Filtered (PO4)	$\mathrm{mg/L}$	-	-
Salinity	ppt	-0.000001	70
Secchi Depth	m	0.000001	50
Specific Conductivity	mS/cm	0.005000	100
Total Kjeldahl Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Phosphorus	$\mathrm{mg/L}$	-	-
Total Suspended Solids	$\mathrm{mg/L}$	-	-
Turbidity	NTU	-	-
Water Temperature	Degrees C	3.000000	40
рН	None	2.000000	13

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 and 2

SEACAR QAQC Description	Include	$SEACAR\ QAQCF lagCode$
Exceeds maximum threshold	0	2Q
Below minimum threshold	0	4Q
Within threshold tolerance	1	6Q
No defined thresholds for this parameter	1	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from STORET and WIN data are examined with the database and used to populate the Include column in data exports.

Table 4: Value Qualifier codes excluded from analysis

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	0	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	0	0	Estimated value
STORET-WIN	V	0	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	0	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network and data flagged with Value Qualifier **H** are included for this program only.

- **H** Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- **Q** Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- ${f S}$ Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.
- U Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the SWMP continuous program are examined with the database and used to populate the Include column in data exports. SWMP Qualifier Codes are indicated by QualifierSource=SWMP.

Table 5: SWMP Value Qualifier codes

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	1	Optional parameter not collected
SWMP	-2	0	Missing data
SWMP	-3	0	Data rejected due to QA/QC
SWMP	-4	0	Outside low sensor range
SWMP	-5	0	Outside high sensor range
SWMP	0	1	Passed initial QA/QC checks
SWMP	1	0	Suspect data
SWMP	2	1	Reserved for future use
SWMP	3	1	Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
SWMP	4	1	Historical: Pre-auto QA/QC
SWMP	5	1	Corrected data

Water Column

The water column habitat extends from the water's surface to the bottom sediments, and it's where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.

SEACAR evaluates water column health with several essential parameters. These include nutrient surveys of nitrogen and phosphorus, and water quality assessments of salinity, dissolved oxygen, pH, and water temperature. Water clarity is evaluated with Secchi depth, turbidity, levels of chlorophyll a, total suspended solids, and colored dissolved organic matter. Additionally, the richness of nekton is indicated by the abundance of free-swimming fishes and macroinvertebrates like crabs and shrimps.

Seasonal Kendall-Tau Analysis

Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as "Significant Trend" (when p < 0.05), or "Non-significant Trend" (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.

Water Quality - Discrete

The following files were used in the discrete analysis:

- $\bullet \ \ Combined \ \ WQ_WC_NUT_Chlorophyll_a_corrected_for_pheophytin-2025-Sep-04.txt$
- Combined WQ WC NUT Chlorophyll a uncorrected for pheophytin-2025-Sep-04.txt
- Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2025-Sep-04.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Dissolved_Oxygen-2025-Sep-04.txt$
- Combined WQ WC NUT Dissolved Oxygen Saturation-2025-Sep-04.txt
- $\bullet \quad Combined_WQ_WC_NUT_pH\text{--}2025\text{--}Sep\text{--}04.txt$
- Combined_WQ_WC_NUT_Salinity-2025-Sep-04.txt
- Combined WQ_WC_NUT_Secchi_Depth-2025-Sep-04.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Nitrogen-2025-Sep-04.txt$
- Combined_WQ_WC_NUT_Total_Phosphorus-2025-Sep-04.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2025-Sep-04.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_Turbidity \hbox{-} 2025 \hbox{-} Sep\hbox{-} 04.txt$
- \bullet Combined_WQ_WC_NUT_Water_Temperature-2025-Sep-04.txt

Chlorophyll a, Corrected for Pheophytin - Discrete

Seasonal Kendall-Tau Trend Analysis

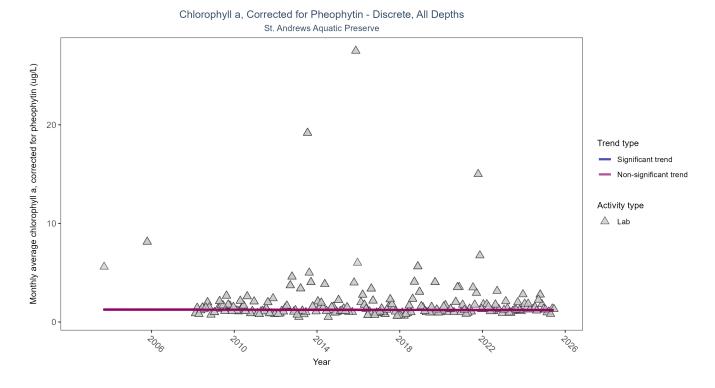


Figure 1: Scatter plot of monthly average levels of chlorophyll a, corrected for pheophytin, over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only laboratory-analyzed chlorophyll a (triangles) is included in the plot.

Table 6: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Corrected for Pheophytin

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	No significant trend	880	20	2003 - 2025	1.2	-0.0104	1.2651	-0.0025	0.7933

Chlorophyll a, corrected for pheophytin, showed no detectable trend between 2003 and 2025.

Figure 2: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 7: Programs contributing data for Chlorophyll a, Corrected for Pheophytin

$\overline{ProgramID}$	N_Data	YearMin	YearMax
470	725	2003	2025
5002	84	2010	2016
514	79	2018	2024

470 - St. Andrews Aquatic Preserve Water Quality Monitoring¹

514 - Florida LAKEWATCH Program²

5002 - Florida STORET / $\rm WIN^3$

Chlorophyll a, Uncorrected for Pheophytin - Discrete Seasonal Kendall-Tau Trend Analysis

Chlorophyll a, Uncorrected for Pheophytin - Discrete, All Depths St. Andrews Aquatic Preserve Trend type Significant trend Non-significant trend Activity type Lab

Figure 3: Scatter plot of monthly average levels of chlorophyll a, uncorrected for pheophytin, over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only laboratory-analyzed chlorophyll a (triangles) is included in the plot.

Year

Table 8: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Uncorrected for Pheophytin

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	Significantly decreasing trend	1220	34	1990 - 2025	1.3	-0.0894	1.626	-0.0075	0.0435

Monthly average chlorophyll a, uncorrected for pheophytin, decreased by 0.01 $\mu g/L$ per year, indicating an increase in water clarity.

Figure 4: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 9: Programs contributing data for Chlorophyll a, Uncorrected for Pheophytin

Program ID	N_Data	YearMin	YearMax
470	800	2000	2025
514	450	1990	2024
5002	22	2010	2012
103	4	2000	2003
115	4	2000	2003
118	2	2000	2001

- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴
- 115 Environmental Monitoring Assessment Program⁵
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁶
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹
- 514 Florida LAKEWATCH Program²
- 5002 Florida STORET / WIN³

Colored Dissolved Organic Matter - Discrete

Seasonal Kendall-Tau Trend Analysis

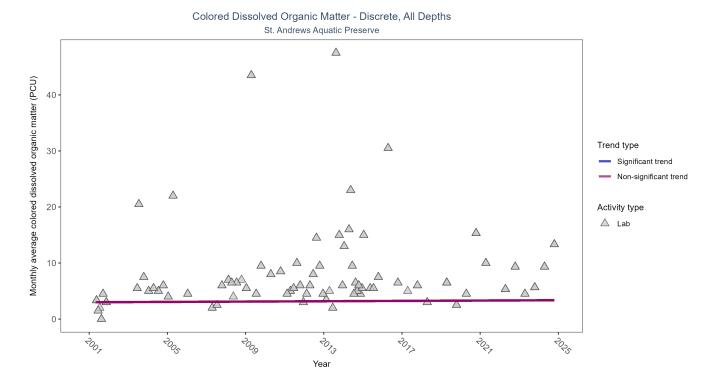


Figure 5: Scatter plot of monthly average colored dissolved organic matter (CDOM) over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only laboratory-analyzed CDOM (triangles) is included in the plot.

Table 10: Seasonal Kendall-Tau Trend Analysis for Colored Dissolved Organic Matter

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	No significant trend	164	23	2001 - 2024	6	0.1959	3	0.0152	0.6403

Colored dissolved organic matter showed no detectable trend between 2001 and 2024.

Figure 6: Map showing location of discrete water quality sampling locations within the boundaries of St. Andrews Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 11: Programs contributing data for Colored Dissolved Organic Matter

$\overline{ProgramID}$	N_Data	YearMin	YearMax
514	164	2001	2024

514 - Florida LAKEWATCH $\rm Program^2$

Dissolved Oxygen - Discrete

Seasonal Kendall-Tau Trend Analysis

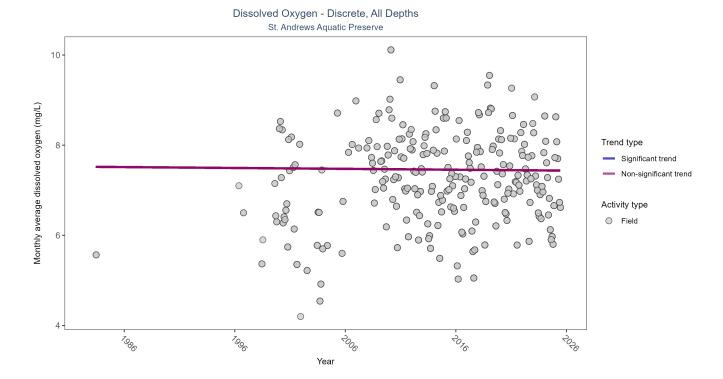


Figure 7: Scatter plot of monthly average dissolved oxygen over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only dissolved oxygen values measured in the field (circles) are included in the plot.

Table 12: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Field	No significant trend	2990	30	1983 - 2025	7.11	-0.0159	7.5201	-0.002	0.7562

Dissolved oxygen showed no detectable trend between 1983 and 2025.

Figure 8: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 13: Programs contributing data for Dissolved Oxygen

$\overline{ProgramID}$	N_Data	YearMin	YearMax
470	837	2000	2025
69	750	2001	2024
5002	680	2005	2025
95	491	1996	2018
557	243	2016	2023
115	17	2000	2003
60	3	1983	1983
118	2	2000	2001

- 60 Southeast Area Monitoring and Assessment Program (SEAMAP) Gulf of Mexico Fall & Summer Shrimp/Groundfish Survey 7
- 69 Fisheries-Independent Monitoring (FIM) Program⁸
- 95- Harmful Algal Bloom Marine Observation Network 9
- 115 Environmental Monitoring Assessment Program⁵

118 - National Aquatic Resource Surveys, National Coastal Condition Assessment⁶

470 - St. Andrews Aquatic Preserve Water Quality Monitoring¹

557- Central Panhandle Aquatic Preserves Seagrass Monitoring 10

5002 - Florida STORET / WIN³

Dissolved Oxygen Saturation - Discrete

Seasonal Kendall-Tau Trend Analysis

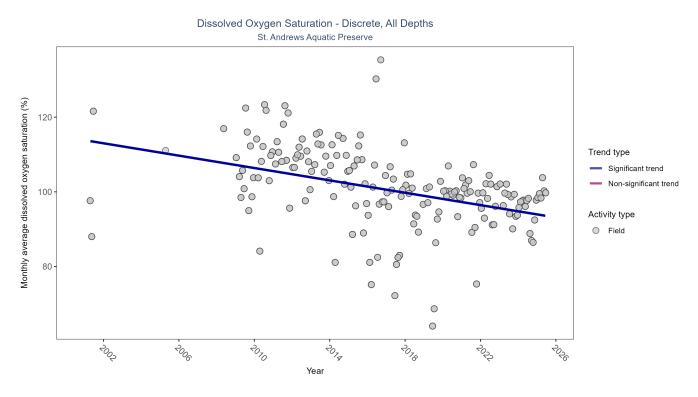


Figure 9: Scatter plot of monthly average dissolved oxygen saturation over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only dissolved oxygen saturation values measured in the field (circles) are included in the plot.

Table 14: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen Saturation

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Field	Significantly decreasing trend	1101	20	2001 - 2025	101.2	-0.396	113.8334	-0.8281	0

Monthly average dissolved oxygen saturation decreased by 0.83% per year.

Figure 10: Map showing location of discrete water quality sampling locations within the boundaries of St. Andrews Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 15: Programs contributing data for Dissolved Oxygen Saturation

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	595	2005	2025
470	356	2001	2015
95	161	2015	2018

95- Harmful Algal Bloom Marine Observation Network
9470- St. Andrews Aquatic Preserve Water Quality Monitoring
15002- Florida STORET / WIN 3

pH - Discrete

Seasonal Kendall-Tau Trend Analysis

pH - Discrete, All Depths St. Andrews Aquatic Preserve

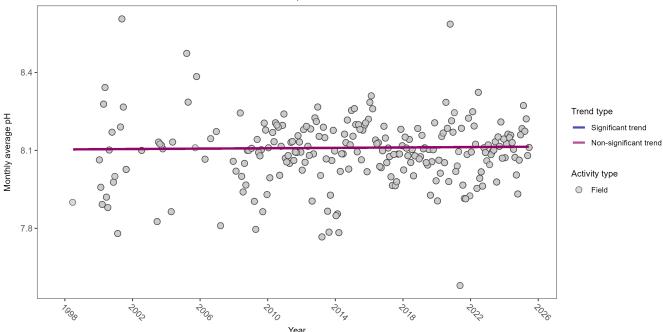


Figure 11: Scatter plot of monthly average pH over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only pH values measured in the field (circles) are included in the plot.

Table 16: Seasonal Kendall-Tau Trend Analysis for pH

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Field	No significant trend	2853	27	1998 - 2025	8.1	0.0245	8.1037	0.0004	0.6537

pH showed no detectable trend between 1998 and 2025.

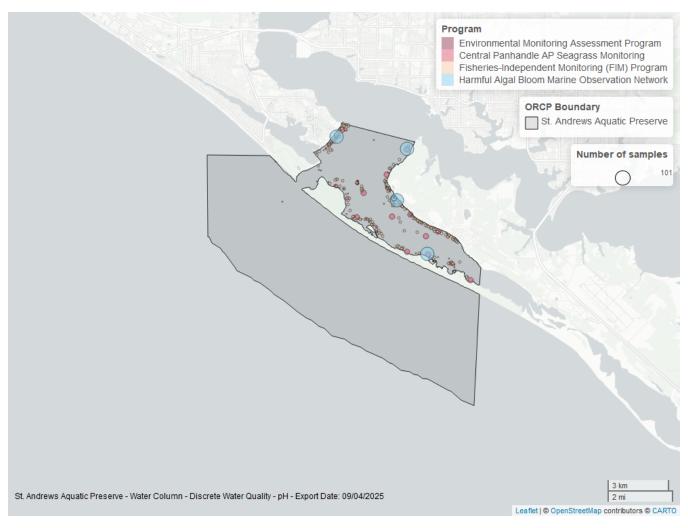


Figure 12: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 17: Programs contributing data for pH

ProgramID	N Data	YearMin.	YearMax
		1 001 111010	
470	858	2000	2025
69	718	2001	2024
5002	681	2005	2025
95	435	1998	2018
557	234	2016	2023
115	17	2000	2003

- 69 Fisheries-Independent Monitoring (FIM) Program⁸
- 95 Harmful Algal Bloom Marine Observation Network⁹
- 115 Environmental Monitoring Assessment $\rm Program^5$
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹
- 557- Central Panhandle Aquatic Preserves Seagrass Monitoring 10
- 5002 Florida STORET / WIN³

Salinity - Discrete

Seasonal Kendall-Tau Trend Analysis

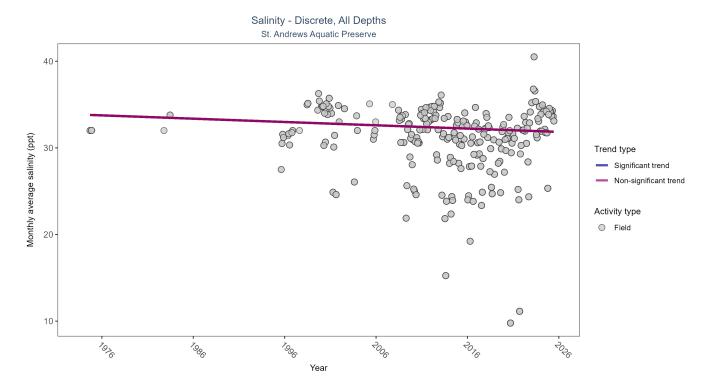


Figure 13: Scatter plot of monthly average salinity over time. If the time series included ten or more years of discrete observations, significant (blue) or non-significant (magenta) trend lines are also shown. Discrete salinity values derived from grab samples analyzed in the field (circles) or the laboratory (triangles) are both included in the plot.

Table 18: Seasonal Kendall-Tau Trend Analysis for Salinity

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	р
All	No significant trend	2716	32	1974 - 2025	31.9	-0.0769	33.8269	-0.0382	0.0515

Salinity showed no detectable trend between 1974 and 2025.

Figure 14: Map showing location of discrete water quality sampling locations within the boundaries of St. Andrews Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 19: Programs contributing data for Salinity

ProgramID N_Data YearMin 69 751 2001 5002 688 2005				
	YearMax	YearMin	N_Data	$\overline{ProgramID}$
5002 688 2005	2024	2001	751	69
000 = 000 = 000	2025	2005	688	5002
95 593 1974	2018	1974	593	95
470 444 2000	2018	2000	444	470
557 229 2016	2023	2016	229	557
115 17 2000	2003	2000	17	115
60 3 1983	1983	1983	3	60

- 60 Southeast Area Monitoring and Assessment Program (SEAMAP) Gulf of Mexico Fall & Summer Shrimp/Groundfish Survey 7
- 69 Fisheries-Independent Monitoring (FIM) Program⁸
- 95 Harmful Algal Bloom Marine Observation Network⁹
- 115 Environmental Monitoring Assessment Program⁵
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹

Secchi Depth - Discrete

Seasonal Kendall-Tau Trend Analysis

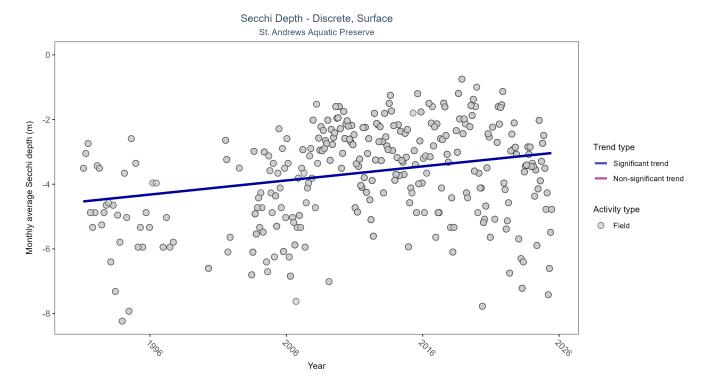


Figure 15: Scatter plot of monthly average Secchi depth over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Secchi depth is only measured in the field (circles).

Table 20: Seasonal Kendall-Tau Trend Analysis for Secchi Depth

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	р
Field	Significantly increasing trend	2357	33	1991 - 2025	-2.5908	0.1662	-4.5357	0.0435	0

Monthly average Secchi depth became shallower by 0.04 m per year, indicating a decrease in water clarity.

Figure 16: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 21: Programs contributing data for Secchi Depth

$\overline{ProgramID}$	N_Data	YearMin	YearMax
69	750	2001	2024
5002	639	2010	2025
514	494	1991	2024
470	356	2000	2015
557	116	2016	2023
115	3	2000	2002

- 69 Fisheries-Independent Monitoring (FIM) Program⁸
- 115 Environmental Monitoring Assessment Program⁵
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹
- 514 Florida LAKEWATCH Program²
- 557- Central Panhandle Aquatic Preserves Seagrass Monitoring 10
- 5002 Florida STORET / WIN³

Total Nitrogen - Discrete

Total Nitrogen Calculation:

The logic for calculated Total Nitrogen was provided by Kevin O'Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.

- 1) TN = TKN + NO3O2;
- 2) TN = TKN + NO3 + NO2;
- 3) TN = ORGN + NH4 + NO3O2;
- 4) TN = ORGN + NH4 + NO2 + NO3;
- 5) TN = TKN + NO3;
- 6) TN = ORGN + NH4 + NO3;

Additional Information:

- Rules for use of sample fraction:
 - Florida Department of Environmental Protection (FDEP) report that if both "Total" and "Dissolved" components are reported, only "Total" is used. If the total is not reported, then the dissolved components are used as a best available replacement.
 - Total nitrogen calculations are done using nitrogen components with the same sample fraction, nitrogen components with mixed total/dissolved sample fractions are not used. In other words, total nitrogen can be calculated when TKN and NO3O2 are both total sample fractions, or when both are dissolved sample fractions. Future calculations of total nitrogen values may be based on components with mixed sample fractions.
- Values inserted into data:
 - ParameterName = "Total Nitrogen"
 - SEACAR_QAQCFlagCode = "1Q"
 - SEACAR_QAQC_Description = "SEACAR Calculated"

Seasonal Kendall-Tau Trend Analysis

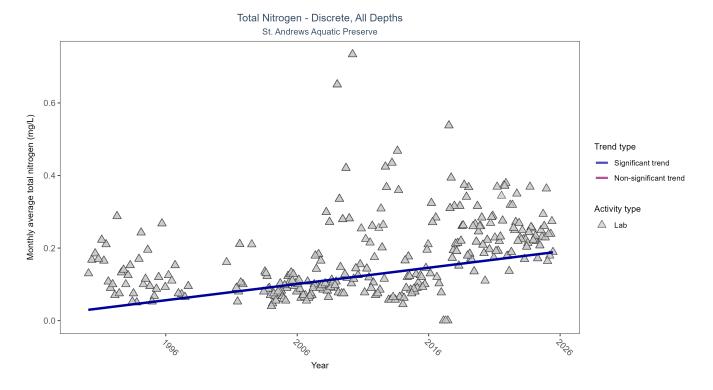


Figure 17: Scatter plot of monthly average total nitrogen over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only nitrogen values obtained from laboratory analyses (triangles) are included in the plot.

Table 22: Seasonal Kendall-Tau Trend Analysis for Total Nitrogen

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	Significantly increasing trend	1161	34	1990 - 2025	0.18	0.3458	0.0294	0.0045	0

Monthly average total nitrogen increased by less than 0.01 mg/L per year.

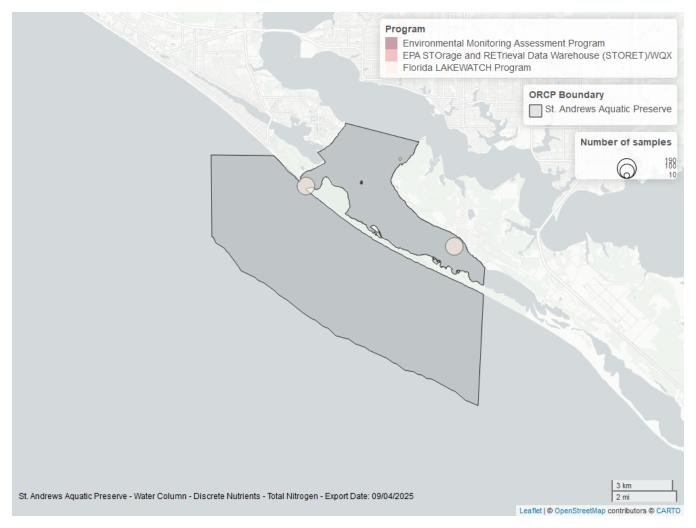


Figure 18: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 23: Programs contributing data for Total Nitrogen

Program ID	N_Data	YearMin	YearMax
514	449	1990	2024
470	360	2007	2025
5002	350	1990	2016
103	7	2000	2003
115	4	2000	2003

- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴
- 115 Environmental Monitoring Assessment Program⁵
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹
- 514 Florida LAKEWATCH Program²
- 5002 Florida STORET / WIN³

Total Phosphorus - Discrete

Seasonal Kendall-Tau Trend Analysis

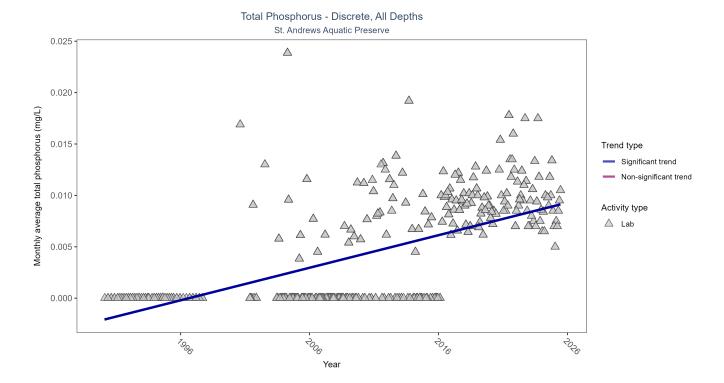


Figure 19: Scatter plot of monthly average total phosphorus over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only phosphorus values obtained from laboratory analyses (triangles) are included in the plot.

Table 24: Seasonal Kendall-Tau Trend Analysis for Total Phosphorus

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	Significantly increasing trend	978	34	1990 - 2025	0.008	0.4579	-0.0021	0.0003	0

Monthly average total phosphorus increased by less than 0.01 mg/L per year.

Figure 20: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 25: Programs contributing data for Total Phosphorus

ProgramID	N_Data	YearMin	YearMax
470	526	2004	2025
514	451	1990	2024
5002	22	2010	2012
103	6	2000	2003
115	4	2000	2003

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴

115 - Environmental Monitoring Assessment Program⁵

470 - St. Andrews Aquatic Preserve Water Quality Monitoring¹

514 - Florida LAKEWATCH Program²

5002 - Florida STORET / WIN³

Total Suspended Solids - Discrete

Seasonal Kendall-Tau Trend Analysis

Total Suspended Solids - Discrete, All Depths St. Andrews Aquatic Preserve \triangle 40 Monthly average total suspended solids (mg/L) \triangle \triangle 30 Trend type Significant trend \triangle Non-significant trend 20 Activity type △ Lab \triangle Δ 10

Figure 21: Scatter plot of monthly average total suspended solids (TSS) over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only TSS values obtained from laboratory analyses (triangles) are included in the plot.

7000

Year

2076

700x

Table 26: Seasonal Kendall-Tau Trend Analysis for Total Suspended Solids

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	Significantly decreasing trend	263	13	2003 - 2015	9	-0.2373	10.5528	-0.4583	0.004

Monthly average total suspended solids decreased by 0.46 mg/L per year, indicating an increase in water clarity.

Figure 22: Map showing location of discrete water quality sampling locations within the boundaries of St. Andrews Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 27: Programs contributing data for Total Suspended Solids

$\overline{ProgramID}$	N_Data	YearMin	YearMax
470	321	2000	2015
5002	18	2010	2012

470 - St. Andrews Aquatic Preserve Water Quality Monitoring 1 5002 - Florida STORET / WIN 3

Turbidity - Discrete

Seasonal Kendall-Tau Trend Analysis

St. Andrews Aquatic Preserve Trend type Significant trend Non-significant trend Activity type Lab

Turbidity - Discrete, All Depths

Figure 23: Scatter plot of monthly average turbidity over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only turbidity values measured in the laboratory (triangles) are included in the plot.

7070

7026

Table 28: Seasonal Kendall-Tau Trend Analysis for Turbidity

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Lab	Significantly decreasing trend	639	20	2003 - 2025	0.75	-0.4721	1.0929	-0.032	0

Monthly average turbidity decreased by 0.03 NTU per year, indicating an increase in water clarity.

707×

Year

7000

7070

Figure 24: Map showing location of discrete water quality sampling locations within the boundaries of St. Andrews Aquatic Preserve. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 29: Programs contributing data for Turbidity

$\overline{ProgramID}$	N_Data	YearMin	YearMax
470	694	2000	2025
5002	520	2005	2025
557	188	2016	2023

470 - St. Andrews Aquatic Preserve Water Quality Monitoring¹

557 - Central Panhandle Aquatic Preserves Seagrass Monitoring 10

5002 - Florida STORET / $\rm WIN^3$

Water Temperature - Discrete

Seasonal Kendall-Tau Trend Analysis

Water Temperature - Discrete, All Depths St. Andrews Aquatic Preserve 0 000 00 30 \bigcirc Monthly average water temperature (Deg C) 0 00 $\circ \infty$ 25 0 Trend type 0 Significant trend 0 Non-significant trend 00 0 0 80 Activity type 000 0 Field 0 0 7996 7006 7986 20% 7000 10/6

Figure 25: Scatter plot of monthly average water temperature over time. If the time series included ten or more years of discrete observations, a significant (blue) or non-significant (magenta) trend line is also shown. Only water temperature measurements taken in the field (circles) are included in the plot.

Year

Table 30: Seasonal Kendall-Tau Trend Analysis for Water Temperature

Activity Type	Statistical Trend	Sample Count	Years with Data	Period of Record	Median	tau	Sen Intercept	Sen Slope	p
Field	No significant trend	3070	31	1974 - 2025	25.4	-0.0149	20.6584	-0.005	0.7489

Water temperature showed no detectable trend between 1974 and 2025.



Figure 26: Map showing location of discrete water quality sampling locations within the boundaries of *St. Andrews Aquatic Preserve*. The bubble size on the maps above reflect the amount of data available at each sampling site.

Table 31: Programs contributing data for Water Temperature

Program ID	N_Data	YearMin	YearMax
470	857	2000	2025
69	754	2001	2024
5002	687	2005	2025
95	523	1974	2018
557	231	2016	2023
115	17	2000	2003
60	3	1983	1983

- 60 Southeast Area Monitoring and Assessment Program (SEAMAP) Gulf of Mexico Fall & Summer Shrimp/Groundfish Survey 7
- 69 Fisheries-Independent Monitoring (FIM) Program⁸
- 95 Harmful Algal Bloom Marine Observation Network⁹
- 115 Environmental Monitoring Assessment Program⁵
- 470 St. Andrews Aquatic Preserve Water Quality Monitoring¹

- Central Panhandle Aquatic Preserves Seagrass Monitoring 10 5002- Florida STORET / WIN 3

Submerged Aquatic Vegetation

The data file used is: $All_SAV_Parameters-2025-Sep-04.txt$

Submerged aquatic vegetation (SAV) refers to plants and plant-like macroalgae species that live entirely underwater. The two primary categories of SAV inhabiting Florida estuaries are benthic macroalgae and seagrasses. They often grow together in dense beds or meadows that carpet the seafloor. Macroalgae include multicellular species of green, red and brown algae that often live attached to the substrate by a holdfast. They tend to grow quickly and can tolerate relatively high nutrient levels, making them a threat to seagrasses and other benthic habitats in areas with poor water quality. In contrast, seagrasses are grass-like, vascular, flowering plants that are attached to the seafloor by extensive root systems. Seagrasses occur throughout the coastal areas of Florida, including protected bays and lagoons as well as deeper offshore waters on the continental shelf. Seagrasses have taken advantage of the broad, shallow shelf and clear water to produce two of the most extensive seagrass beds anywhere in continental North America.

Parameters

Percent Cover measures the fraction of an area of seafloor that is covered by SAV, usually estimated by evaluating multiple small areas of seafloor. Percent cover is often estimated for total SAV, individual types of vegetation (seagrass, attached algae, drift algae) and individual species.

Frequency of Occurrence was calculated as the number of times a taxon was observed in a year divided by the number of sampling events, multiplied by 100. Analysis is conducted at the quadrat level and is inclusive of all quadrats (i.e., quadrats evaluated using Braun-Blanquet, modified Braun-Blanquet, and percent cover."

Species

Turtle grass (*Thalassia testudinum*) is the largest of the Florida seagrasses, with longer, thicker blades and deeper root structures than any of the other seagrasses. It is considered a climax seagrass species.

Shoal grass (*Halodule wrightii*) is an early colonizer of vegetated areas and usually grows in water too shallow for other species except *widgeon grass*. It can often tolerate larger salinity ranges than other seagrass species. *Shoal grass* is characterized by thin, flat blades, that are narrower than *turtle grass* blades.

Manatee grass (Syringodium filiforme) is easily recognizable because its leaves are thin and cylindrical instead of the flat, ribbon-like form shared by many other seagrass species. The leaves can grow up to half a meter in length. Manatee grass is usually found in mixed seagrass beds or small, dense monospecific patches.

Widgeon grass (*Ruppia maritima*) grows in both fresh and salt water and is widely distributed throughout Florida's estuaries in less saline areas, particularly in inlets along the east coast. This species resembles *shoal grass* in certain environments but can be identified by the pointed tips of its leaves.

Three species of *Halophila spp.* are found in Florida - **Star grass** (*Halophila engelmannii*), **Paddle grass** (*Halophila decipiens*), and **Johnson's seagrass** (*Halophila johnsonii*). These are smaller, more fragile seagrasses than other Florida species and are considered ephemeral. They grow along a single long rhizome, with short blades. These species are not well-studied, although surveys are underway to define their ecological roles.

Notes

Star grass, Paddle grass, and Johnson's seagrass will be grouped together and listed as **Halophila spp.** in the following managed areas. This is because several surveys did not specify to the species level:

- Banana River Aquatic Preserve
- Indian River-Malabar to Vero Beach Aquatic Preserve
- Indian River-Vero Beach to Ft. Pierce Aquatic Preserve
- Jensen Beach to Jupiter Inlet Aquatic Preserve
- Loxahatchee River-Lake Worth Creek Aquatic Preserve
- Mosquito Lagoon Aquatic Preserve

- Biscayne Bay Aquatic Preserve
- Florida Keys National Marine Sanctuary

St. Andrews Aquatic Preserve SAV Percent Cover - Sample Locations

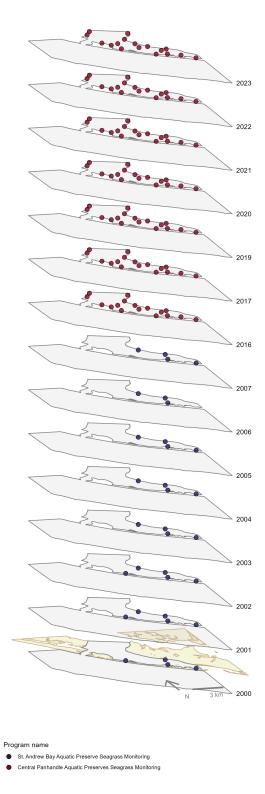


Figure 27: Maps showing the temporal scope of SAV sampling sites within the boundaries of St. Andrews Aquatic Preserve by Program name.

Click here to view spatio-temporal plots on GitHub.

Sampling locations by Program:

Figure 28: Map showing SAV sampling sites within the boundaries of *St. Andrews Aquatic Preserve*. The point size reflects the number of samples at a given sampling site.

Table 32: Program Information for Submerged Aquatic Vegetation

ProgramID	N-Data	YearMin	YearMax	method	Sample Locations
557	703	2016	2023	Braun Blanquet	17
556	1652	2000	2007	Percent Cover	5

Program names:

556 - St. Andrew Bay Aquatic Preserve Seagrass Monitoring¹¹

557- Central Panhandle Aquatic Preserves Seagrass Monitoring 10

St. Andrews Aquatic Preserve Shoal grass Total seagrass Manatee grass 100 000 0000000 75 50 25 Number of Median percent cover observations 60 Turtle grass Drift algae 40 100 20 75 50 25 00 00000 7006 7075 7003 7000 Year

Median percent cover

Figure 29: Scatter plots of median percent cover of submerged aquatic vegetation over time by group. Plots for time series that included five or more years of observations show the estimated trend as a blue line.

St. Andrews Aquatic Preserve 100 75 Species Manatee grass Median percent cover Shoal grass Turtle grass 50 Drift algae Total seagrass Trend significance (alpha = 0.05) Not significant 25 0 Year

Median percent cover

Figure 30: Trends in median percent cover for various seagrass species in St. Andrews Aquatic Preserve - simplified

Table 33: Percent Cover Trend Analysis for St. Andrews Aquatic Preserve

CommonName	Trend Significance (0.05)	Period of Record	LME-Intercept	$LME ext{-}Slope$	p
Drift algae	No significant trend	2016 - 2023	84.424052	-2.6242569	0.0740358
Shoal grass	No significant trend	2000 - 2023	11.986980	0.2705287	0.4854922
No grass in quadrat	Model did not fit the available data	2016 - 2023	-	-	-
Manatee grass	No significant trend	2000 - 2023	4.172787	-0.1513897	0.8195940
Turtle grass	No significant trend	2000 - 2023	27.038970	1.0624914	0.1315360
Total seagrass	No significant trend	2000 - 2007	88.135870	-1.5226757	0.1502197

Total seagrass, manatee grass, shoal grass, turtle grass, and drift algae showed no detectable change in percent cover.

Frequency of occurrence St. Andrews Aquatic Preserve

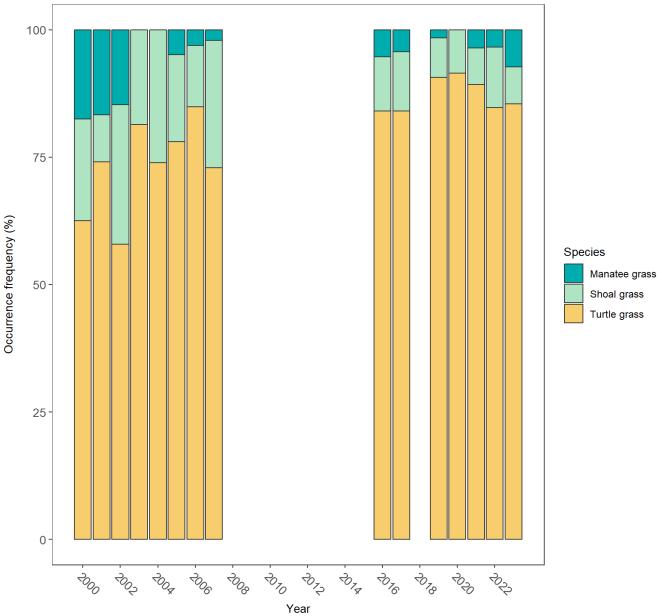


Figure 31: Frequency of occurrence for various seagrass species in St. Andrews Aquatic Preserve

SAV Water Column Analysis

The following parameters are available for St. Andrews Aquatic Preserve within the SAV_WC_Report:

- Colored Disolved Organic Matter
- Chlorophyll a
- Dissolved Oxygen
- Dissolved Oxygen Saturation
- pH
- Salinity

- Secchi Depth
- Water Temperature
- Total Nitrogen
- Total Suspended Solids
- Turbidity

Access the reports here: DRAFT_SAV_WC_Report_2024-11-20.pdf

Species list

Acetabularia crenulata ¹	Halodule wrightii ¹	Thalassia testudinum ¹
$Drift algae^1$	No grass in quadrat ¹	Total seagrass ¹
Gracilaria sp. ¹	Syringodium filiforme ¹	Unknown seagrass ¹

- Submerged Aquatic Vegetation

References

- 1. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Central Panhandle Aquatic Preserves. St. Andrews Aquatic Preserve Water Quality Monitoring. (2024).
- 2. University of Florida (UF); Institute of Food and Agricultural Sciences. Florida LAKEWATCH Program. (2024).
- 3. Florida Department of Environmental Protection (DEP). Florida STORET / WIN. (2024).
- 4. U.S. Environmental Protection Agency (EPA). EPA STOrage and RETrieval Data Warehouse (STORET)/WQX. (2023).
- 5. U.S. Environmental Protection Agency (EPA); Office of Research and Development. Environmental Monitoring Assessment Program. (2004).
- 6. U.S. Environmental Protection Agency (EPA); Office of Water; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); National Estuary Program (NEP); coastal states. National Aquatic Resource Surveys, National Coastal Condition Assessment. (2021).
- 7. Gulf States Marine Fisheries Commission. Southeast Area Monitoring and Assessment Program (SEAMAP) Gulf of Mexico Fall & Summer Shrimp/Groundfish Survey. (2016).
- 8. Florida Fish and Wildlife Conservation Commission (FWC). Fisheries-Independent Monitoring (FIM) Program. (2022).
- 9. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). Harmful Algal Bloom Marine Observation Network. (2018).
- 10. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Central Panhandle Aquatic Preserves. Central Panhandle Aquatic Preserves Seagrass Monitoring. (2023).
- 11. St. Andrew Bay Resource Management Association. St. Andrew Bay Aquatic Preserve Seagrass Monitoring. (2007).