Nassau River-St. Johns River Marshes Aquatic Preserve SEACAR Habitat Analyses

Last compiled on 08 January, 2025

Contents	
Funding & Acknowledgements	2
Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Water Quality - Discrete Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality Dissolved Oxygen - Discrete Water Quality Dissolved Oxygen Saturation - Discrete Water Quality pH - Discrete Water Quality Salinity - Discrete Water Quality Secchi Depth - Discrete Water Quality Total Nitrogen - Discrete Water Quality Total Suspended Solids - Discrete Water Quality Turbidity - Discrete Water Quality Water Temperature - Discrete Water Quality	$7 \\ 9 \\ 12 \\ 13 \\ 16 \\ 18 \\ 19 \\ 22 \\ 24 \\ 26 \\ $
Water Quality - Continuous Dissolved Oxygen - All Stations Combined	34 35 36 37

References

Funding & Acknowledgements

The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.

With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.

Published: 2025-01-08

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (*FDEP*) Division of Environmental Assessment and Restoration (*DEAR*) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (*QAQC*) Flags are inserted into the *SEACAR_QAQCFlagCode* and *SEACAR_QAQC_Description* columns of the export data. The *Include* column indicates whether the *QAQC* Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the *Include* column to exclude data (1 to include, 0 to exclude).

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	$\mathrm{mg/L}$	-0.000001	50
Dissolved Oxygen Saturation	%	-0.000001	500
Salinity	ppt	-0.000001	70
Turbidity	NTU	-0.000001	4000
Water Temperature	Degrees C	-5.000000	45
pH	None	2.000000	14

Table 1: Continuous Water Quality threshold values

Table 2: 1	Discrete W	Vater Q	uality the	reshold v	alues

Parameter Name	Units	Low Threshold	High Threshold
Ammonia, Un-ionized (NH3)	mg/L	-	-
Ammonium, Filtered (NH4)	mg/L	-	-
Chlorophyll a, Corrected for Pheophytin	$\rm ug/L$	-	-
Chlorophyll a, Uncorrected for Pheophytin	$\mathrm{ug/L}$	-	-
Colored Dissolved Organic Matter	PCU	-	-

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	25
Dissolved Oxygen Saturation	%	-0.000001	310
Fluorescent Dissolved Organic Matter	QSE	-	-
Light Extinction Coefficient	m^-1	-	-
NO2+3, Filtered	$\mathrm{mg/L}$	-	-
Nitrate (NO3)	$\mathrm{mg/L}$	-	-
Nitrite (NO2)	m mg/L	-	-
Nitrogen, organic	m mg/L	-	-
Phosphate, Filtered (PO4)	m mg/L	-	-
Salinity	ppt	-0.000001	70
Secchi Depth	m	0.000001	50
Specific Conductivity	$\mathrm{mS/cm}$	0.005000	100
Total Kjeldahl Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Phosphorus	$\mathrm{mg/L}$	-	-
Total Suspended Solids	$\mathrm{mg/L}$	-	-
Turbidity	NTU	-	-
Water Temperature	Degrees C	3.000000	40
рН	None	2.000000	13

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 and 2

SEACAR QAQC Description	Include	$SEACAR \ QAQCFlagCode$
Exceeds maximum threshold	0	2Q
Below minimum threshold	0	4Q
Within threshold tolerance	1	6Q
No defined thresholds for this parameter	1	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from *STORET* and *WIN* data are examined with the database and used to populate the *Include* column in data exports.

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	0	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	0	0	Estimated value
STORET-WIN	V	0	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	0	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Table 4: Value Qualifier codes excluded from analysis

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - *Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network* and data flagged with Value Qualifier **H** are included for this program only.

 \mathbf{H} - Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.

 ${\bf I}$ - The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.

 \mathbf{Q} - Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.

 ${f S}$ - Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.

U - Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the *SWMP* continuous program are examined with the database and used to populate the *Include* column in data exports. *SWMP* Qualifier Codes are indicated by *QualifierSource=SWMP*.

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	Yes	Optional parameter not collected
SWMP	-2	No	Missing data
SWMP	-3	No	Data rejected due to QA/QC
SWMP	-4	No	Outside low sensor range
SWMP	-5	No	Outside high sensor range
SWMP	0	Yes	Passed initial QA/QC checks
SWMP	1	No	Suspect data
SWMP	2	Yes	Reserved for future use
SWMP	3	Yes	Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
SWMP	4	Yes	Historical: Pre-auto QA/QC
SWMP	5	Yes	Corrected data

Table	$5 \cdot$	SWMP	Value	Qualifier	codes
rabic	υ.	D VV IVII	varue	Quanner	coucs

Water Column

The water column habitat extends from the water's surface to the bottom sediments, and it's where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.

SEACAR evaluates water column health with several essential parameters. These include nutrient surveys of nitrogen and phosphorus, andwater quality assessments of salinity, dissolved oxygen, pH, and water temperature. Water clarity is evaluated with Secchi depth, turbidity, levels of chlorophyll a, total suspended solids, and colored dissolved organic matter. Additionally, the richness of nekton is indicated by the abundance of free-swimming fishes and macroinvertebrates like crabs and shrimps.

Seasonal Kendall-Tau Analysis

Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as "Significant Trend" (when p < 0.05), or "Non-significant Trend" (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.

Water Quality - Discrete

The following files were used in the discrete analysis:

- $\bullet \ \ Combined_WQ_WC_NUT_Chlorophyll_a_corrected_for_pheophytin-2024-Dec-08.txt\\$
- Combined_WQ_WC_NUT_Chlorophyll_a_uncorrected_for_pheophytin-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen_Saturation-2024-Dec-08.txt
- Combined_WQ_WC_NUT_pH-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Salinity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Secchi_Depth-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Nitrogen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Phosphorus-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Turbidity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Water_Temperature-2024-Dec-08.txt

Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

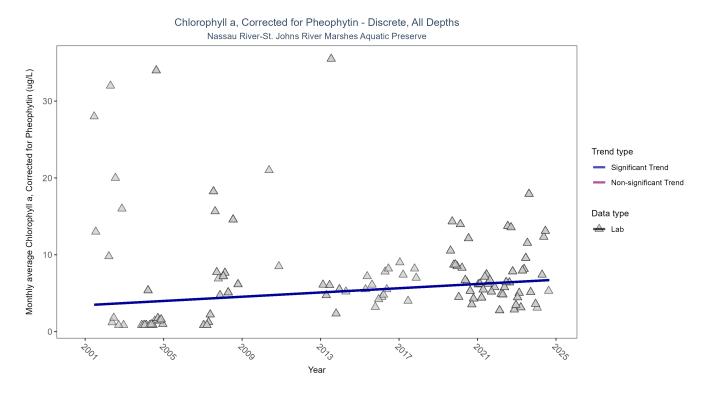


Figure 1: Seasonal Kendall-Tau Results for Chlorophyll a, Corrected for Pheophytin - Discrete

Table 6: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Corrected for Pheophytin

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	603	18	5.8	TRUE	0.1546	0.0262	0.1382	3.435	15.4391	0.1633	1

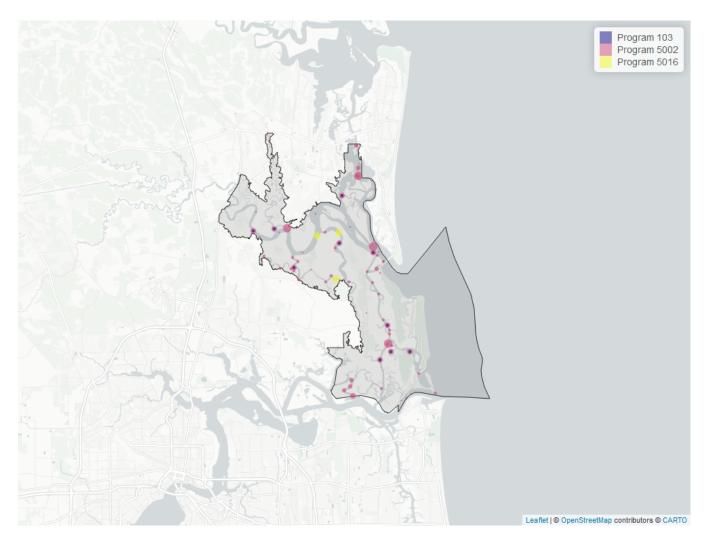


Figure 2: Map showing location of Discrete sampling sites for Chlorophyll a, Corrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	512	2001	2024
5016	72	2019	2024
103	39	2021	2021

 Table 7: Programs contributing data for Chlorophyll a, Corrected for Pheophytin

Program names:

103- EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^15002- Florida STORET / WIN^25016- NEAP Monthly Water Quality Monitoring^3

Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality

Chlorophyll a, Uncorrected for Pheophytin - Discrete, All Depths Nassau River-St. Johns River Marshes Aquatic Preserve

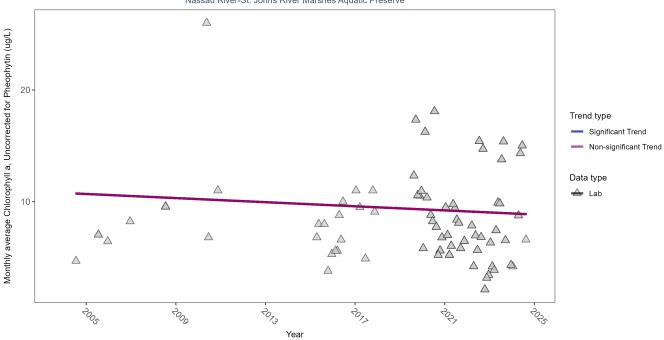


Figure 3: Seasonal Kendall-Tau Results for Chlorophyll a, Uncorrected for Pheophytin - Discrete

Table 8: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Uncorrected for Pheophytin

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	$\operatorname{SennSlope}$	SennIntercept	ChiSquared	pChiSquared	Trend
All	437	14	7.7552	TRUE	-0.1173	0.5782	-0.0918	10.7814	15.1214	0.177	0

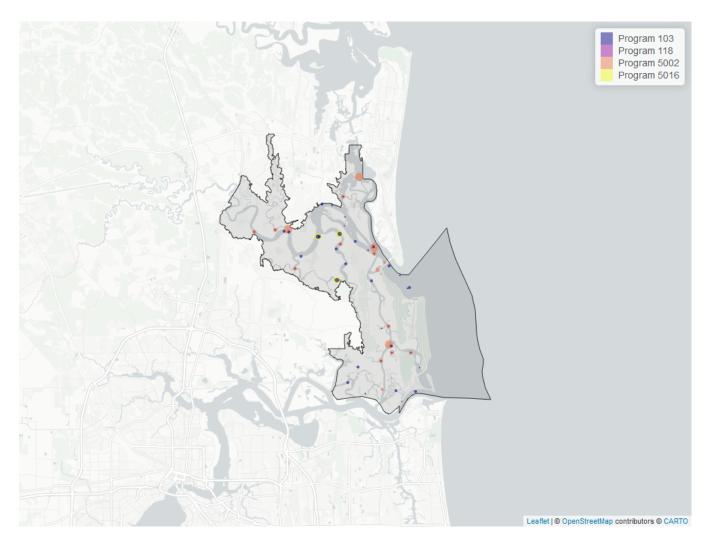


Figure 4: Map showing location of Discrete sampling sites for Chlorophyll a, Uncorrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
5002	227	2010	2024
103	139	2004	2021
5016	73	2019	2024
118	3	2005	2010

 Table 9: Programs contributing data for Chlorophyll a, Uncorrected for Pheophytin

Program names:

103- EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^1118- National Aquatic Resource Surveys, National Coastal Condition Assessment^45002- Florida STORET / WIN^25016- NEAP Monthly Water Quality Monitoring^3

Dissolved Oxygen - Discrete Water Quality

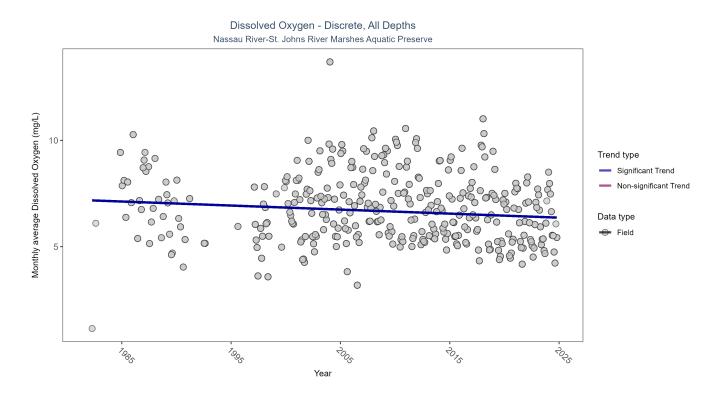


Figure 5: Seasonal Kendall-Tau Results for Dissolved Oxygen - Discrete

Table 10: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	39300	39	6.3	TRUE	-0.1548	0	-0.019	7.1805	6.2614	0.8554	-1

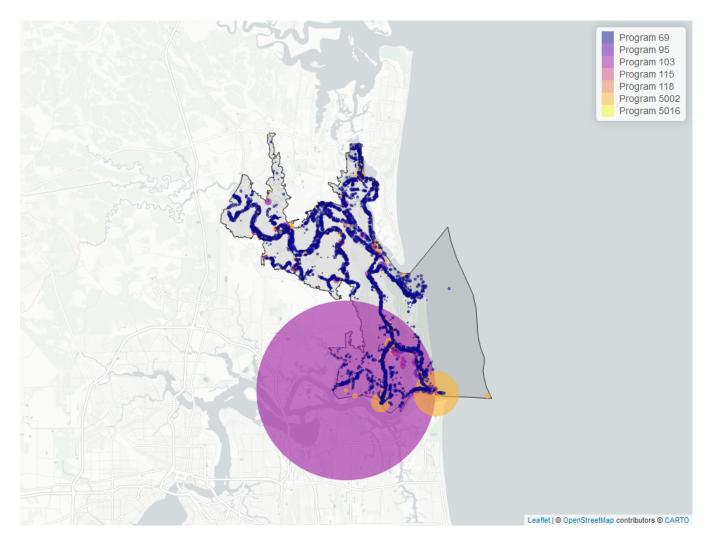


Figure 6: Map showing location of Discrete sampling sites for Dissolved Oxygen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
103	18455	1982	2021
69	18151	2001	2022
5002	2505	1997	2024
95	189	2013	2018
5016	72	2019	2024
118	12	2005	2021
115	4	1995	1995

Table 11: Programs contributing data for Dissolved Oxygen

Program names:

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^5$
- 95 Harmful Algal Bloom Marine Observation $\rm Network^6$
- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^1
- 115 Environmental Monitoring Assessment $\rm Program^7$
- 118 National Aquatic Resource Surveys, National Coastal Condition $\operatorname{Assessment}^4$

5002 - Florida STORET / WIN^2 5016 - NEAP Monthly Water Quality Monitoring^3

Dissolved Oxygen Saturation - Discrete Water Quality

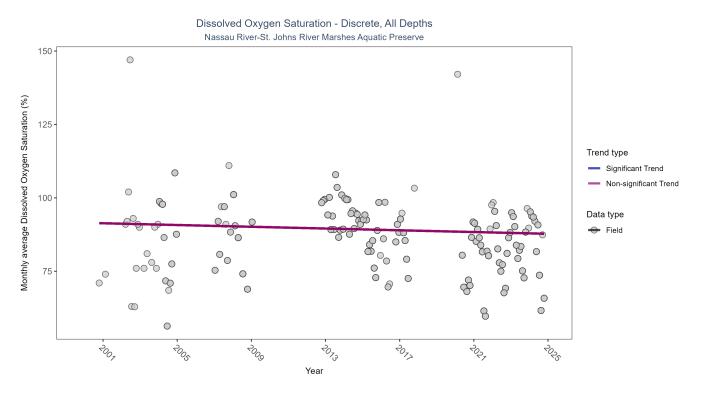


Figure 7: Seasonal Kendall-Tau Results for Dissolved Oxygen Saturation - Discrete

Table 12: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen Saturation

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	1247	19	87.9	TRUE	-0.1098	0.0635	-0.1496	91.4992	6.3123	0.8517	0

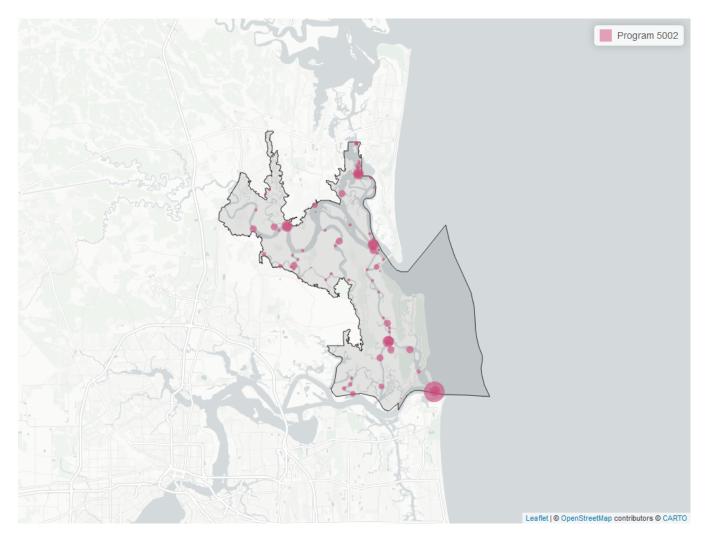


Figure 8: Map showing location of Discrete sampling sites for Dissolved Oxygen Saturation. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	1265	2000	2024

Table 13: Programs contributing data for Dissolved Oxygen Saturation

Program names:

5002 - Florida STORET / $\rm WIN^2$

pH - Discrete Water Quality

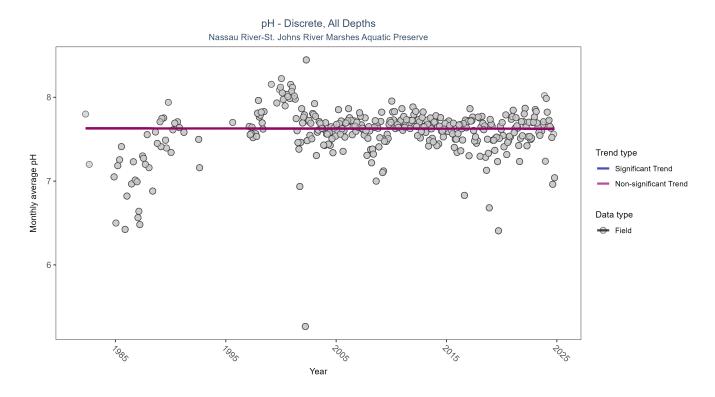


Figure 9: Seasonal Kendall-Tau Results for pH - Discrete

Table 14: Seasonal Kendall-Tau	Trend	Analysis for pl	Η
--------------------------------	-------	-----------------	---

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	$\operatorname{SennSlope}$	SennIntercept	ChiSquared	pChiSquared	Trend
All	29660	39	7.66	TRUE	-0.0048	0.9584	-0.0001	7.6294	5.8922	0.8805	0

Figure 10: Map showing location of Discrete sampling sites for pH. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
69	18155	2001	2022
103	8896	1982	2021
5002	2392	1997	2024
95	192	2013	2018
5016	72	2019	2024
115	3	1995	1995

Table 15: Programs contributing data for pH

Program names:

- Fisheries-Independent Monitoring (FIM) $\rm Program^5$
- Harmful Algal Bloom Marine Observation $\rm Network^6$
- EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^1
- Environmental Monitoring Assessment $\rm Program^7$
- Florida STORET / WIN^2
- NEAP Monthly Water Quality Monitoring 3

Salinity - Discrete Water Quality

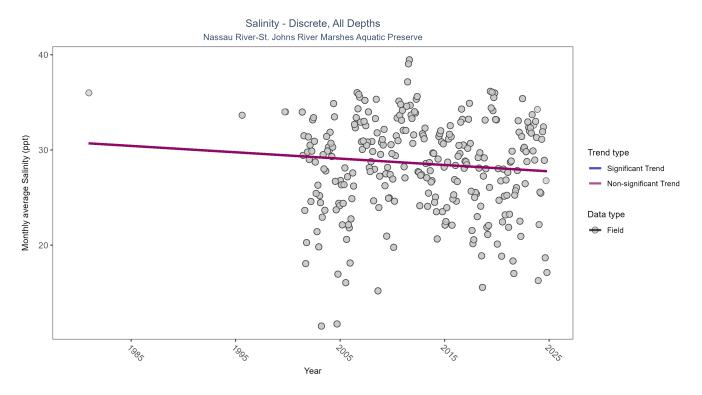


Figure 11: Seasonal Kendall-Tau Results for Salinity - Discrete

Table 16:	Seasonal	Kendall-Tau	Trend	Analysis	for	Salinity

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	21104	29	30.5	TRUE	-0.0637	0.1078	-0.0668	30.7585	6.0347	0.871	0

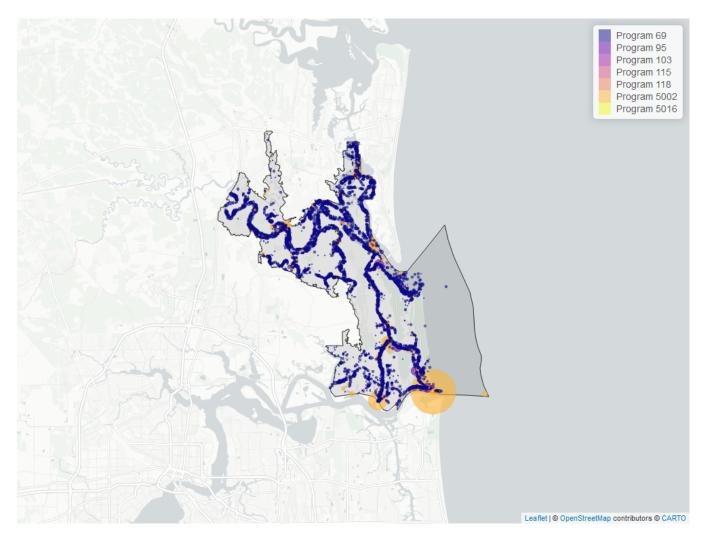


Figure 12: Map showing location of Discrete sampling sites for Salinity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
69	18214	2001	2022
5002	2494	1997	2024
95	212	1980	2018
103	136	2004	2008
5016	51	2019	2023
118	13	2015	2021
115	4	1995	1995

Table 17: Programs contributing data for Salinity

Program names:

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^5$
- 95 Harmful Algal Bloom Marine Observation $\rm Network^6$
- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^1
- 115 Environmental Monitoring Assessment $\rm Program^7$
- 118 National Aquatic Resource Surveys, National Coastal Condition $\operatorname{Assessment}^4$

5002 - Florida STORET / WIN^2 5016 - NEAP Monthly Water Quality Monitoring^3

Secchi Depth - Discrete Water Quality

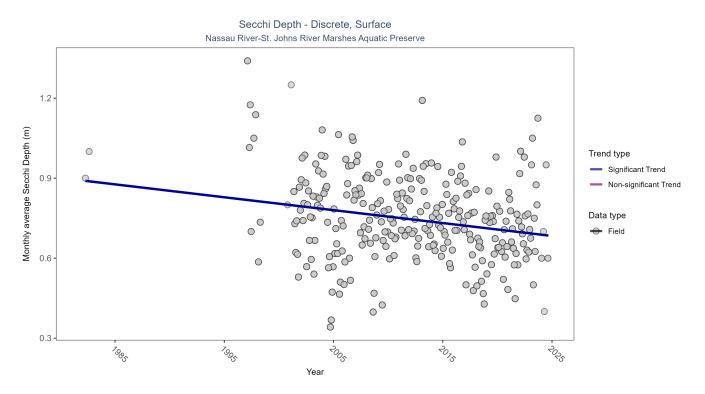


Figure 13: Seasonal Kendall-Tau Results for Secchi Depth - Discrete

	Table 18:	Seasonal	Kendall-Tau	Trend	Analysis	for	Secchi	Depth
--	-----------	----------	-------------	-------	----------	-----	--------	-------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
Surface	18753	28	0.7	TRUE	-0.1629	0.0001	-0.0048	0.8914	13.4515	0.2648	-1

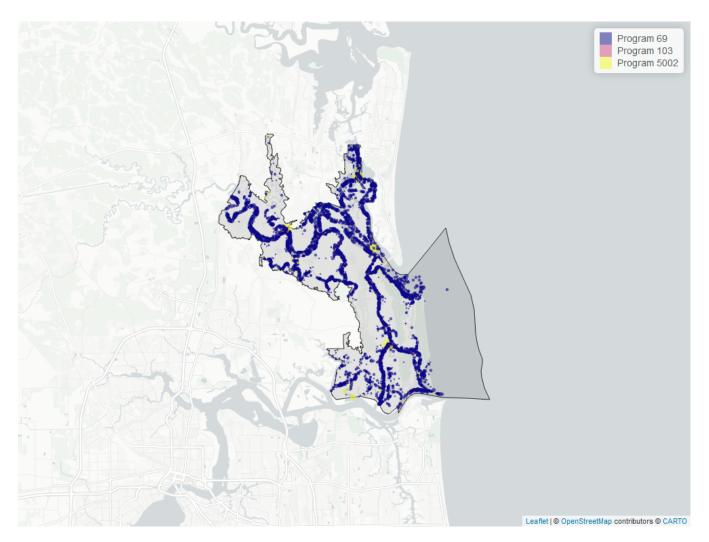


Figure 14: Map showing location of Discrete sampling sites for Secchi Depth. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
69	18146	2001	2022
5002	515	2000	2024
103	94	1982	2021

Table 19: Programs contributing data for Secchi Depth

Program names:

69 - Fisheries-Independent Monitoring (FIM) $\rm Program^5$ 103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^1 5002 - Florida STORET / WIN^2

Total Nitrogen - Discrete Water Quality

Total Nitrogen Calculation:

The logic for calculated Total Nitrogen was provided by Kevin O'Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.

- 1) TN = TKN + NO3O2;
- 2) TN = TKN + NO3 + NO2;
- 3) TN = ORGN + NH4 + NO3O2;
- 4) TN = ORGN + NH4 + NO2 + NO3;
- 5) TN = TKN + NO3;
- 6) TN = ORGN + NH4 + NO3;

Additional Information:

- Rules for use of sample fraction:
 - Florida Department of Environmental Protection (FDEP) report that if both "Total" and "Dissolved" components are reported, only "Total" is used. If the total is not reported, then the dissolved components are used as a best available replacement.
 - Total nitrogen calculations are done using nitrogen components with the same sample fraction, nitrogen components with mixed total/dissolved sample fractions are not used. In other words, total nitrogen can be calculated when TKN and NO3O2 are both total sample fractions, or when both are dissolved sample fractions. Future calculations of total nitrogen values may be based on components with mixed sample fractions.
- Values inserted into data:
 - ParameterName = "Total Nitrogen"
 - SEACAR_QAQCFlagCode = "1Q"
 - SEACAR_QAQC_Description = "SEACAR Calculated"

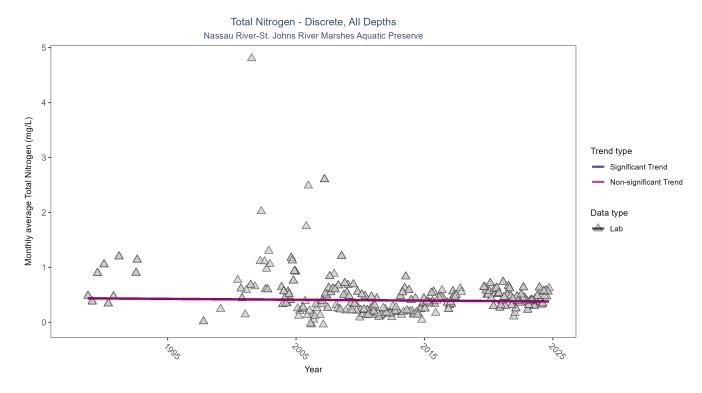


Figure 15: Seasonal Kendall-Tau Results for Total Nitrogen - Discrete

Table 20, Season	al Kondall Tau	Trand Analyzia	for Total Nitrogan
Table 20: Season	iai Kendan-Tau	Trend Analysis	s for Total Nitrogen

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	983	31	0.415	TRUE	-0.0285	0.5461	-0.0016	0.4373	6.6816	0.8242	0

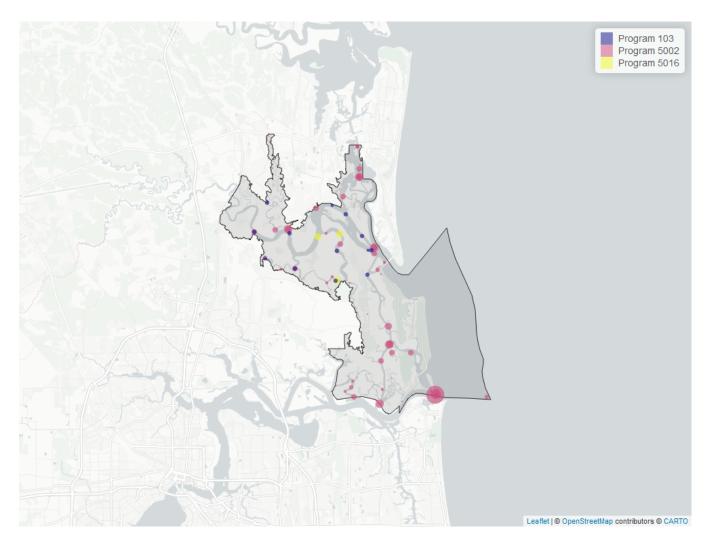


Figure 16: Map showing location of Discrete sampling sites for Total Nitrogen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	820	1997	2024
103	94	1988	2005
5016	69	2019	2024

Table 21: Programs contributing data for Total Nitrogen

Program names:

103- EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^15002- Florida STORET / WIN^25016- NEAP Monthly Water Quality Monitoring^3

Total Phosphorus - Discrete Water Quality

Figure 17: Seasonal Kendall-Tau Results for Total Phosphorus - Discrete

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	1742	34	0.069	TRUE	-0.1445	0.0014	-0.0007	0.0797	9.1244	0.6104	-1

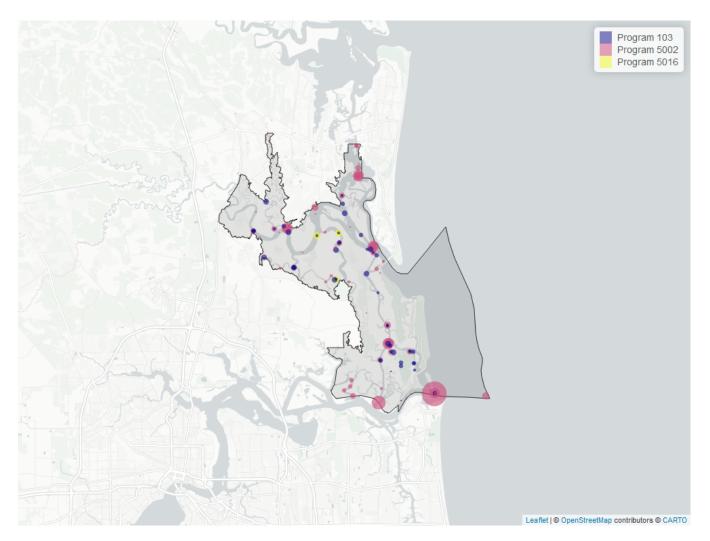


Figure 18: Map showing location of Discrete sampling sites for Total Phosphorus. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	1317	1997	2024
103	376	1983	2021
5016	72	2019	2024

Table 23: Programs contributing data for Total Phosphorus

Program names:

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^15002 - Florida STORET / WIN^25016 - NEAP Monthly Water Quality Monitoring^3

Total Suspended Solids - Discrete Water Quality

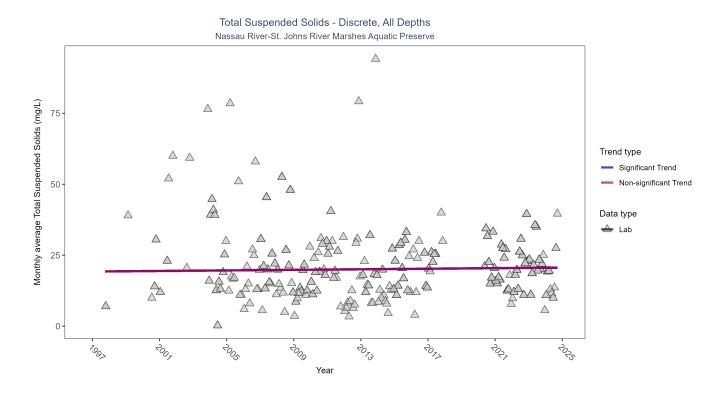


Figure 19: Seasonal Kendall-Tau Results for Total Suspended Solids - Discrete

Table 24: Seasonal Kendall-Tau Trend Analysis for Total Suspended Solids

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	782	25	17.6	TRUE	0.0206	0.6605	0.0495	19.2572	11.6749	0.3886	0

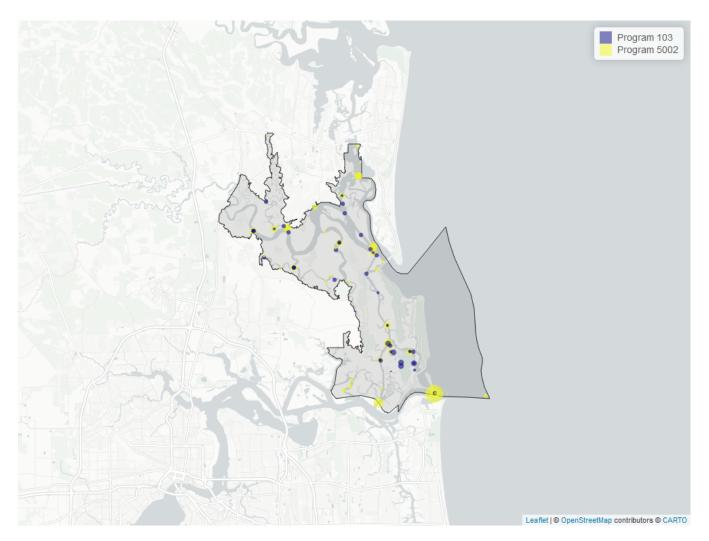


Figure 20: Map showing location of Discrete sampling sites for Total Suspended Solids. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	813	1997	2024
103	321	1983	2021

Table 25: Programs contributing data for Total Suspended Solids

Program names:

103- EPA STO
rage and RETrieval Data Warehouse (STORET)/WQX^15002- Florida STORET / WIN^2

Turbidity - Discrete Water Quality

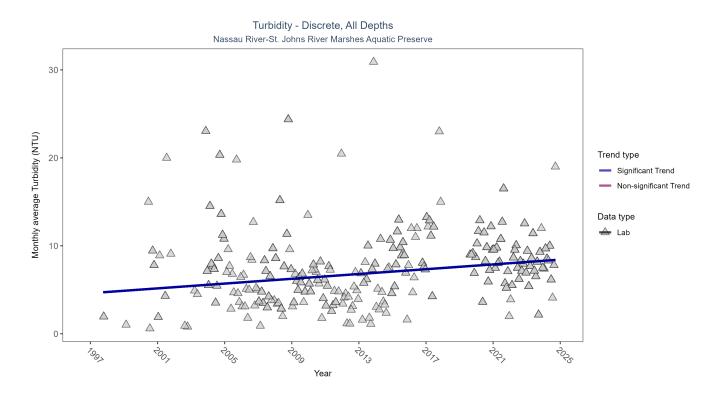


Figure 21: Seasonal Kendall-Tau Results for Turbidity - Discrete

Table 26:	Seasonal	Kendall-Tau	Trend	Analysis	for	Turbidity	
-----------	----------	-------------	-------	----------	-----	-----------	--

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	916	26	7	TRUE	0.1738	0.0002	0.1363	4.6153	13.1408	0.2842	1

Figure 22: Map showing location of Discrete sampling sites for Turbidity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
103	15270	1985	2021
5002	865	1997	2024
5016	73	2019	2024

Table 27: Programs contributing data for Turbidity

Program names:

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^15002 - Florida STORET / WIN^25016 - NEAP Monthly Water Quality Monitoring^3

Water Temperature - Discrete Water Quality

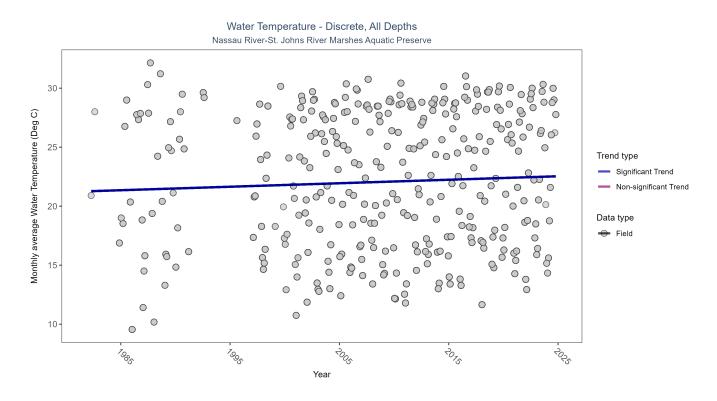


Figure 23: Seasonal Kendall-Tau Results for Water Temperature - Discrete

Table 28:	Seasonal	Kendall-Ta	au Trend	Analysis	for Water	Temperature

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	40859	39	21.6	TRUE	0.1455	0.0001	0.0296	21.2625	7.5953	0.749	1

Figure 24: Map showing location of Discrete sampling sites for Water Temperature. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
103	19853	1982	2021
69	18218	2001	2022
5002	2508	1997	2024
95	212	2007	2018
5016	72	2019	2024
115	4	1995	1995

Table 29: Programs contributing data for Water Temperature

Program names:

- Fisheries-Independent Monitoring (FIM) $\rm Program^5$
- Harmful Algal Bloom Marine Observation $\rm Network^6$
- EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^1
- Environmental Monitoring Assessment $\rm Program^7$
- Florida STORET / WIN^2
- NEAP Monthly Water Quality Monitoring 3

Water Quality - Continuous

The following files were used in the continuous analysis:

- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_NE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_Saturation_NE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_pH_NE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Salinity_NE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Turbidity_NE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Water_Temperature_NE-2024-Dec-08.txt

Continuous monitoring locations in Nassau River-St. Johns River Marshes Aquatic Preserve

ProgramLocationID	Years of Data	Use in Analysis	Parameters
02231291	3	FALSE	DO , TempW

Table 30: National Water Information System (7)

Table 31: Northeast Aquatic Preserves Continuous Water Quality Monitoring (5006)

ProgramLocationID	Years of Data	Use in Analysis	Parameters
NECI	2	FALSE	DO , DOS , pH , Sal , Turb , TempW
NEHM	3	FALSE	DO , DOS , pH , Sal , Turb , TempW
NEKD	8	TRUE	DO , DOS , pH , Sal , Turb , TempW
NELC	7	TRUE	DO , DOS , pH , Sal , Turb , TempW
NENR	3	FALSE	DO , DOS , pH , Sal , Turb , TempW

Table 32: St. Johns River Water Management District Continuous Water Quality Programs (5061)

ProgramLocationID	Years of Data	Use in Analysis	Parameters
NCB19020038	2	TRUE	DO , DOS , pH , Sal , Turb , TempW
NCBARD16		FALSE	DO , DOS , pH , Sal , Turb , TempW
NCBNRCM		TRUE	DO , DOS , pH , Sal , Turb , TempW

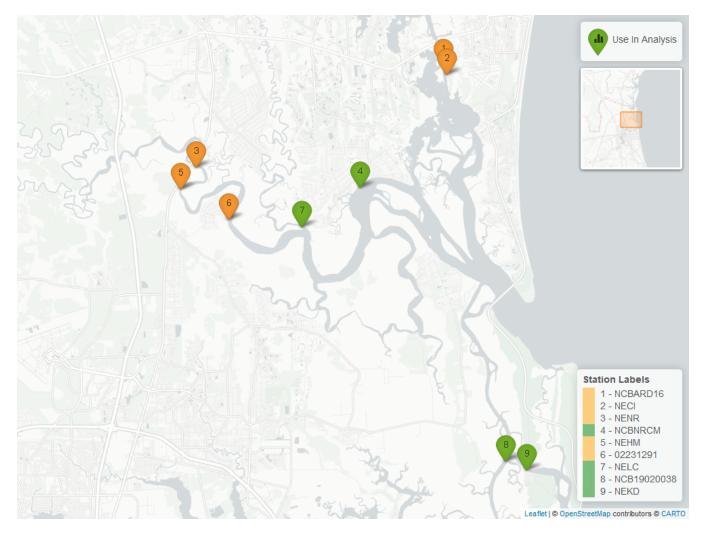


Figure 25: Map showing Continuous Water Quality Monitoring sampling locations within the boundaries of Nassau River-St. Johns River Marshes Aquatic Preserve. Sites marked as *Use In Analysis* are featured in this report.

Dissolved Oxygen - All Stations Combined

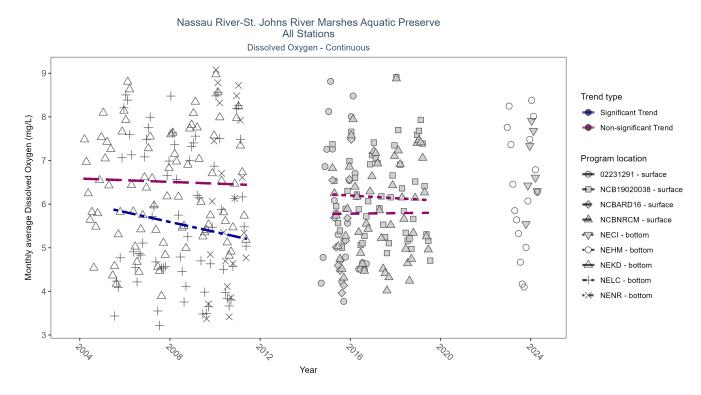


Figure 26: Figure for Dissolved Oxygen - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
02231291	689	3	2014 - 2016	5.70	-	-	-	-
NEHM	45684	3	2022 - 2024	6.20	-	-	-	-
NECI	16044	2	2023 - 2024	7.10	-	-	-	-
NEKD	110958	8	2004 - 2011	6.40	-0.04	6.59	-0.02	0.5607
NELC	95860	7	2005 - 2011	5.60	-0.34	5.93	-0.11	0.0014
NENR	31438	3	2009 - 2011	5.80	-	-	-	-
NCBARD16	7417	2	2015 - 2016	5.08	-	-	-	-
NCB19020038	34476	5	2015 - 2019	6.16	-0.03	6.23	-0.03	0.6108
NCBNRCM	35477	5	2015 - 2019	5.79	0.05	5.78	0.01	0.7970

Table 33: Seasonal Kendall-Tau Results for All Stations - Dissolved Oxygen

Dissolved Oxygen Saturation - All Stations Combined

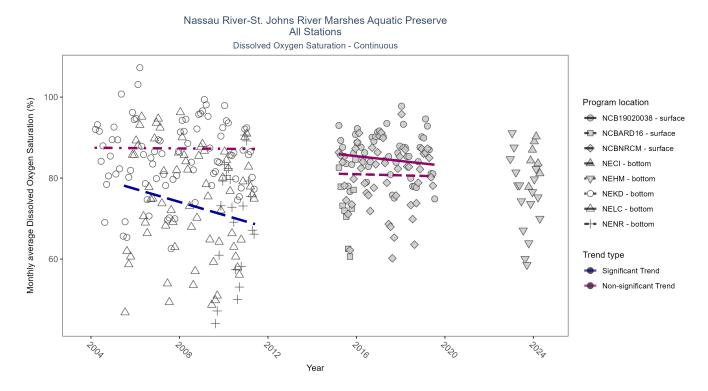


Figure 27: Figure for Dissolved Oxygen Saturation - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
NEHM	45684	3	2022 - 2024	76.40	-	-	-	-
NECI	16044	2	2023 - 2024	86.60	-	-	-	-
NEKD	110983	8	2004 - 2011	89.10	0	87.49	-0.04	0.9338
NELC	95868	7	2005 - 2011	77.90	-0.27	78.93	-1.6	0.0111
NENR	31438	3	2009 - 2011	73.20	-	-	-	-
NCBARD16	7417	2	2015 - 2016	74.44	-	-	-	-
NCBNRCM	35240	5	2015 - 2019	82.06	-0.05	81.1	-0.14	0.7970
NCB19020038	34438	5	2015 - 2019	87.06	-0.16	86.02	-0.6	0.1268

Table 34: Seasonal Kendall-Tau Results for All Stations - Dissolved Oxygen Saturation

pH - All Stations Combined

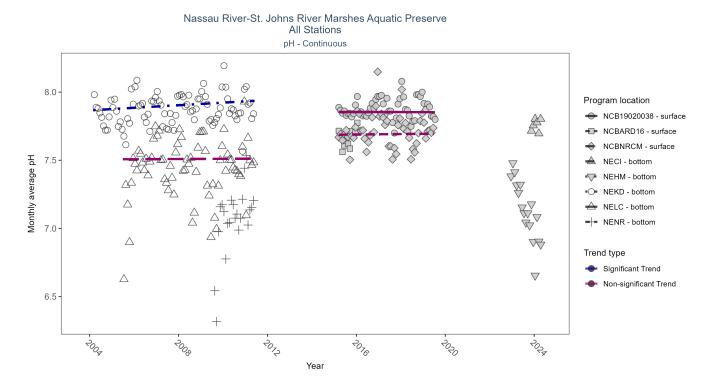


Figure 28: Figure for pH - Continuous - All stations combined

Table 35:	Seasonal	Kendall-Tau	Results for	· All Stations	- pH
-----------	----------	-------------	-------------	----------------	------

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
NECI	13737	2	2023 - 2024	7.80	-	-	-	-
NEHM	45692	3	2022 - 2024	7.20	-	-	-	-
NEKD	113471	8	2004 - 2011	7.90	0.19	7.87	0.01	0.0491
NELC	96488	7	2005 - 2011	7.50	0.02	7.51	0	0.9121
NENR	31438	3	2009 - 2011	7.10	-	-	-	-
NCB19020038	34405	5	2015 - 2019	7.88	-0.01	7.85	0	1.0000
NCBARD16	6952	2	2015 - 2016	7.66	-	-	-	-
NCBNRCM	35819	5	2015 - 2019	7.72	-0.01	7.69	0	0.9317

Salinity - All Stations Combined

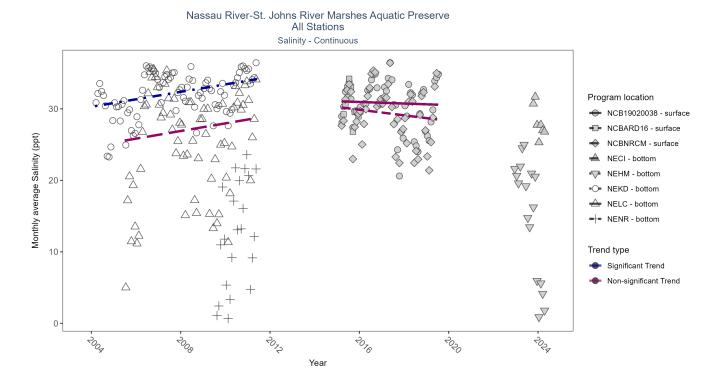


Figure 29: Figure for Salinity - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
NEHM	45691	3	2022 - 2024	17.40	-	-	-	-
NEKD	118328	8	2004 - 2011	33.20	0.31	30.29	0.52	0.0006
NECI	16043	2	2023 - 2024	27.60	-	-	-	-
NELC	100339	7	2005 - 2011	27.90	0.09	25.3	0.53	0.4397
NENR	31438	3	2009 - 2011	12.40	-	-	-	-
NCBNRCM	35411	5	2015 - 2019	30.29	-0.12	30.26	-0.39	0.5483
NCBARD16	7418	2	2015 - 2016	30.07	-	-	-	-
NCB19020038	34438	5	2015 - 2019	31.75	-0.06	31.07	-0.11	1.0000

Turbidity - All Stations Combined

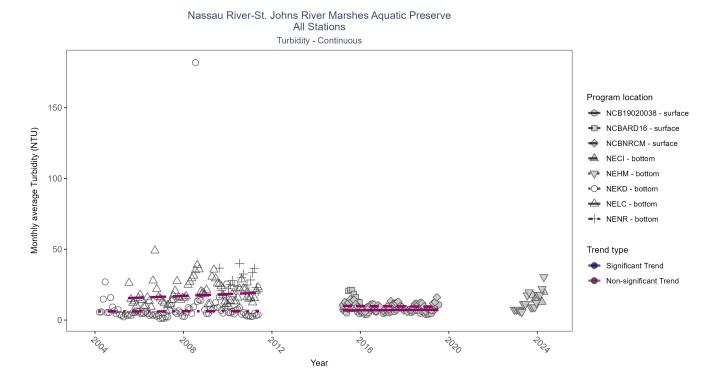


Figure 30: Figure for Turbidity - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	${\bf Senn Intercept}$	SennSlope	р
NEHM	45870	3	2022 - 2024	10.00	-	-	-	-
NEKD	114181	8	2004 - 2011	4.00	0.02	6.06	0.05	0.8697
NECI	16045	2	2023 - 2024	12.00	-	-	-	-
NELC	96153	7	2005 - 2011	15.00	0.16	15.18	0.64	0.1513
NENR	31087	3	2009 - 2011	21.00	-	-	-	-
NCB19020038	31407	5	2015 - 2019	5.77	-0.01	6.79	0.12	0.7876
NCBARD16	7385	2	2015 - 2016	12.89	-	-	-	-
NCBNRCM	34696	5	2015 - 2019	8.64	-0.1	10.09	-0.14	0.6001

Table 37: Seasonal Kendall-Tau Results for All Stations - Turbidity

Water Temperature - All Stations Combined

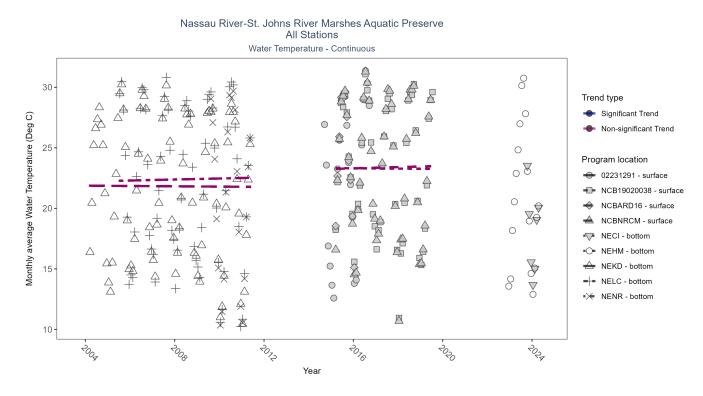


Figure 31: Figure for Water Temperature - Continuous - All stations combined

Table 38: Seasonal Kendall-Tau Results for Al	ll Stations - Water					
Temperature						

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
02231291	710	3	2014 - 2016	23.50	-	-	-	-
NEHM	46096	3	2022 - 2024	20.50	-	-	-	-
NECI	16049	2	2023 - 2024	16.60	-	-	-	-
NEKD	118328	8	2004 - 2011	22.10	-0.04	21.88	-0.01	0.8057
NELC	100343	7	2005 - 2011	22.70	0.05	22.26	0.04	0.7405
NENR	31438	3	2009 - 2011	22.00	-	-	-	-
NCBNRCM	35817	5	2015 - 2019	24.03	0.07	23.26	0.05	0.6681
NCB19020038	34483	5	2015 - 2019	24.78	-0.03	23.32	-0.01	1.0000
NCBARD16	7419	2	2015 - 2016	25.08	-	-	-	-

References

- 1. U.S. Environmental Protection Agency (EPA). EPA STOrage and RETrieval Data Warehouse (STORET)/WQX. (2023).
- 2. Florida Department of Environmental Protection (DEP). Florida STORET / WIN. (2024).
- 3. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Northeast Florida Aquatic Preserves; Division of Environmental Assessment and Restoration. NEAP Monthly Water Quality Monitoring . (2024).
- 4. U.S. Environmental Protection Agency (EPA); Office of Water; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); National Estuary Program (NEP); coastal states. National Aquatic Resource Surveys, National Coastal Condition Assessment. (2021).
- 5. Florida Fish and Wildlife Conservation Commission (FWC). Fisheries-Independent Monitoring (FIM) Program. (2022).
- 6. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). Harmful Algal Bloom Marine Observation Network. (2018).
- 7. U.S. Environmental Protection Agency (EPA); Office of Research and Development. Environmental Monitoring Assessment Program. (2004).