Guana Tolomato Matanzas National Estuarine Research Reserve SEACAR Habitat Analyses

Last compiled on 08 January, 2025

Contents

Funding & Acknowledgements	2
Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Salinity - Discrete Water Quality Secchi Depth - Discrete Water Quality Total Nitrogen - Discrete Water Quality Total Phosphorus - Discrete Water Quality Total Suspended Solids - Discrete Water Quality Turbidity - Discrete Water Quality Water Temperature - Discrete Water Quality Water Quality - Continuous Dissolved Oxygen - All Stations Combined Dissolved Oxygen Saturation - All Stations Combined pH - All Stations Combined Salinity - All Stations Combined Turbidity - All Stations Combined Water Temperature - All Stations Combined Water Temperature - All Stations Combined	11 14 15 18 20 21 24 26 28 30 35 36 37 38 39 40
Coastal Wetlands	41
Density Natural Percent Live Natural Shell Height	42 42 43 43 44 44
References	45

Funding & Acknowledgements

The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.

With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.

Published: 2025-01-08

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (FDEP) Division of Environmental Assessment and Restoration (DEAR) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (QAQC) Flags are inserted into the $SEACAR_QAQCFlagCode$ and $SEACAR_QAQC_Description$ columns of the export data. The Include column indicates whether the QAQC Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the Include column to exclude data (1 to include, 0 to exclude).

Table 1: Continuous Water Quality threshold values

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	50
Dissolved Oxygen Saturation	%	-0.000001	500
Salinity	ppt	-0.000001	70
Turbidity	NTU	-0.000001	4000
Water Temperature	Degrees C	-5.000000	45
рН	None	2.000000	14

Table 2: Discrete Water Quality threshold values

Parameter Name	Units	Low Threshold	High Threshold
Ammonia, Un-ionized (NH3)	mg/L	-	-
Ammonium, Filtered (NH4)	mg/L	-	-
Chlorophyll a, Corrected for Pheophytin	ug/L	-	-
Chlorophyll a, Uncorrected for Pheophytin	ug/L	-	-
Colored Dissolved Organic Matter	PCU	-	-

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	$_{ m mg/L}$	-0.000001	25
Dissolved Oxygen Saturation	%	-0.000001	310
Fluorescent Dissolved Organic Matter	QSE	-	-
Light Extinction Coefficient	m^-1	-	-
NO2+3, Filtered	mg/L	-	-
Nitrate (NO3)	m mg/L	-	-
Nitrite (NO2)	mg/L	-	-
Nitrogen, organic	mg/L	-	-
Phosphate, Filtered (PO4)	mg/L	-	-
Salinity	ppt	-0.000001	70
Secchi Depth	m	0.000001	50
Specific Conductivity	mS/cm	0.005000	100
Total Kjeldahl Nitrogen	mg/L	-	-
Total Nitrogen	mg/L	-	-
Total Nitrogen	m mg/L	-	-
Total Phosphorus	mg/L	-	-
Total Suspended Solids	mg/L	-	-
Turbidity	NTU	-	-
Water Temperature	Degrees C	3.000000	40
pH	None	2.000000	13

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 and 2 $\,$

SEACAR QAQC Description	Include	$SEACAR\ QAQCF lagCode$
Exceeds maximum threshold	0	2Q
Below minimum threshold	0	4Q
Within threshold tolerance	1	6Q
No defined thresholds for this parameter	1	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from *STORET* and *WIN* data are examined with the database and used to populate the *Include* column in data exports.

Table 4: Value Qualifier codes excluded from analysis

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	0	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	0	0	Estimated value
STORET-WIN	V	0	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	0	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network and data flagged with Value Qualifier **H** are included for this program only.

- **H** Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.
- I The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
- **Q** Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
- ${f S}$ Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.
- U Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the SWMP continuous program are examined with the database and used to populate the Include column in data exports. SWMP Qualifier Codes are indicated by QualifierSource=SWMP.

Table 5: SWMP Value Qualifier codes

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	Yes	Optional parameter not collected
SWMP	-2	No	Missing data
SWMP	-3	No	Data rejected due to QA/QC
SWMP	-4	No	Outside low sensor range
SWMP	-5	No	Outside high sensor range
SWMP	0	Yes	Passed initial QA/QC checks
SWMP	1	No	Suspect data
SWMP	2	Yes	Reserved for future use
SWMP	3	Yes	Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
SWMP	4	Yes	Historical: Pre-auto QA/QC
SWMP	5	Yes	Corrected data

Water Column

The water column habitat extends from the water's surface to the bottom sediments, and it's where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.

SEACAR evaluates water column health with several essential parameters. These include nutrient surveys of nitrogen and phosphorus, andwater quality assessments of salinity, dissolved oxygen, pH, and water temperature. Water clarity is evaluated with Secchi depth, turbidity, levels of chlorophyll a, total suspended solids, and colored dissolved organic matter. Additionally, the richness of nekton is indicated by the abundance of free-swimming fishes and macroinvertebrates like crabs and shrimps.

Seasonal Kendall-Tau Analysis

Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as "Significant Trend" (when p < 0.05), or "Non-significant Trend" (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.

Water Quality - Discrete

The following files were used in the discrete analysis:

- Combined WQ WC NUT Chlorophyll a corrected for pheophytin-2024-Dec-08.txt
- Combined WQ WC NUT Chlorophyll a uncorrected for pheophytin-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2024-Dec-08.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Dissolved_Oxygen-2024-Dec-08.txt$
- Combined WQ WC NUT Dissolved Oxygen Saturation-2024-Dec-08.txt
- $\bullet \quad Combined_WQ_WC_NUT_pH\text{--}2024\text{--}Dec\text{--}08.txt$
- Combined_WQ_WC_NUT_Salinity-2024-Dec-08.txt
- Combined WQ WC NUT Secchi Depth-2024-Dec-08.txt
- $\bullet \quad Combined_WQ_WC_NUT_Total_Nitrogen-2024-Dec-08.txt$
- Combined_WQ_WC_NUT_Total_Phosphorus-2024-Dec-08.txt
- $\bullet \ \ Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2024-Dec-08.txt$
- $\bullet \quad Combined_WQ_WC_NUT_Turbidity \hbox{-} 2024 \hbox{-} Dec \hbox{-} 08.txt$
- \bullet Combined_WQ_WC_NUT_Water_Temperature-2024-Dec-08.txt

Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

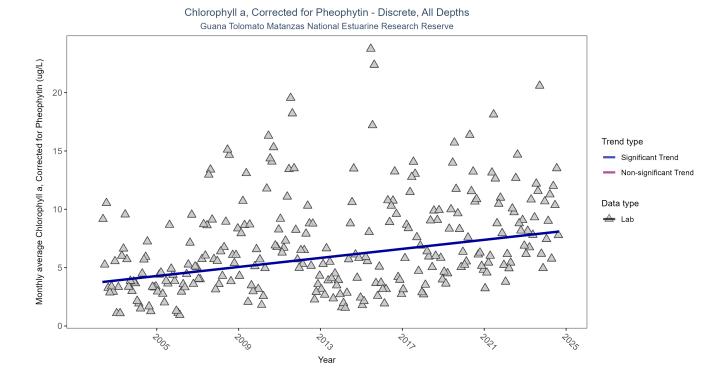


Figure 1: Seasonal Kendall-Tau Results for Chlorophyll a, Corrected for Pheophytin - Discrete

Table 6: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Corrected for Pheophytin

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	${\bf SennIntercept}$	ChiSquared	${\it pChiSquared}$	Trend
All	7975	23	4.7	TRUE	0.3067	0	0.1938	3.7011	2.9843	0.9909	1

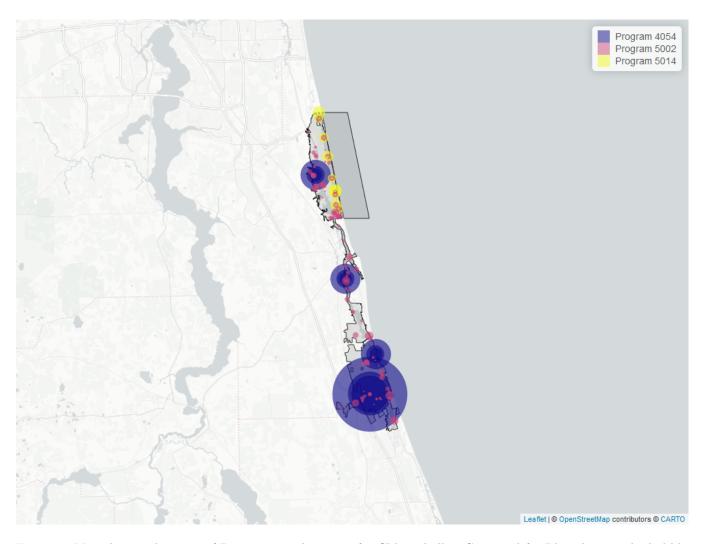


Figure 2: Map showing location of Discrete sampling sites for Chlorophyll a, Corrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 7: Programs contributing data for Chlorophyll a, Corrected for Pheophytin

$\overline{ProgramID}$	N_Data	YearMin	YearMax
4054	6903	2002	2024
5002	855	2002	2024
5014	663	2017	2024

4054 - Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

5002 - Florida STORET / WIN²

5014 - Guana River and Guana Lake Water Quality Monitoring³

Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality

Chlorophyll a, Uncorrected for Pheophytin - Discrete, All Depths Guana Tolomato Matanzas National Estuarine Research Reserve

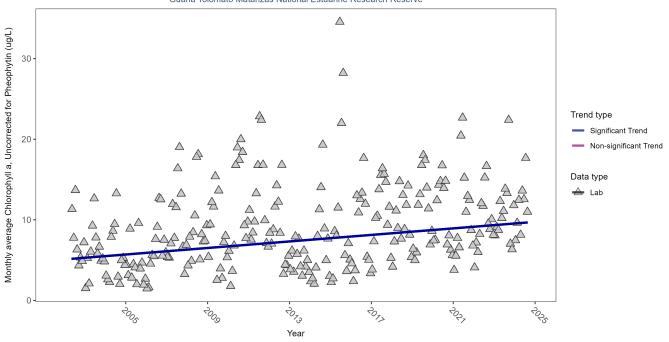


Figure 3: Seasonal Kendall-Tau Results for Chlorophyll a, Uncorrected for Pheophytin - Discrete

Table 8: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Uncorrected for Pheophytin

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	${\bf Senn Intercept}$	${\it ChiSquared}$	${\it pChiSquared}$	Trend
All	6299	23	6.2	TRUE	0.265	0	0.2026	5.0887	1.93	0.9987	1

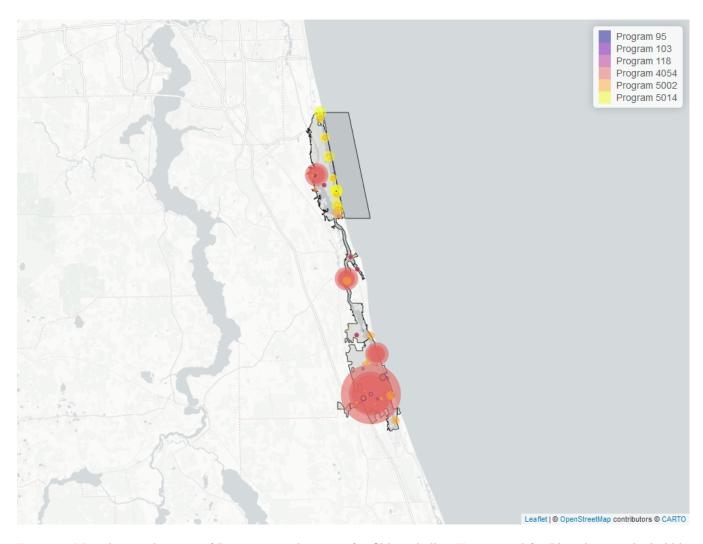


Figure 4: Map showing location of Discrete sampling sites for Chlorophyll a, Uncorrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 9: Programs contributing data for Chlorophyll a, Uncorrected for Pheophytin

D ID	M D /	17 11.	37 M
ProgramID	N_Data	YearMin	YearMax
4054	5564	2002	2024
5014	723	2017	2024
5002	402	2008	2024
103	118	2020	2021
118	3	2006	2010
95	1	2012	2012

- 95 Harmful Algal Bloom Marine Observation Network⁴
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX 5
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁶
- 4054 Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹
- 5002 Florida STORET / WIN 2
- 5014 Guana River and Guana Lake Water Quality Monitoring³

Colored Dissolved Organic Matter - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

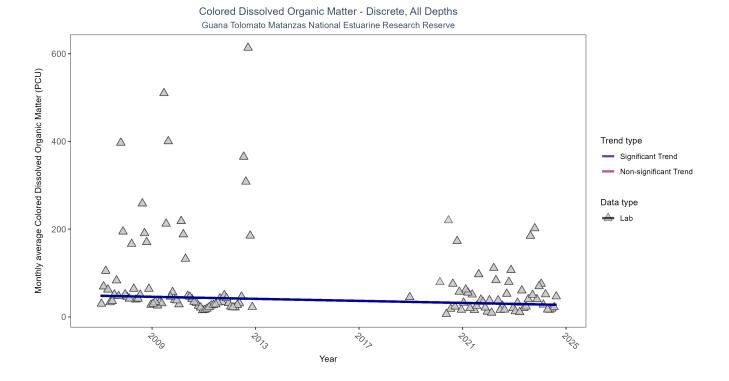


Figure 5: Seasonal Kendall-Tau Results for Colored Dissolved Organic Matter - Discrete

Table 10: Seasonal Kendall-Tau Trend Analysis for Colored Dissolved Organic Matter

RelativeDepth	N-Data	N-Years	Median	Independent	tau	p	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	1811	12	33.4	TRUE	-0.2092	0.0024	-1.1629	48.1193	4.3156	0.9598	-1

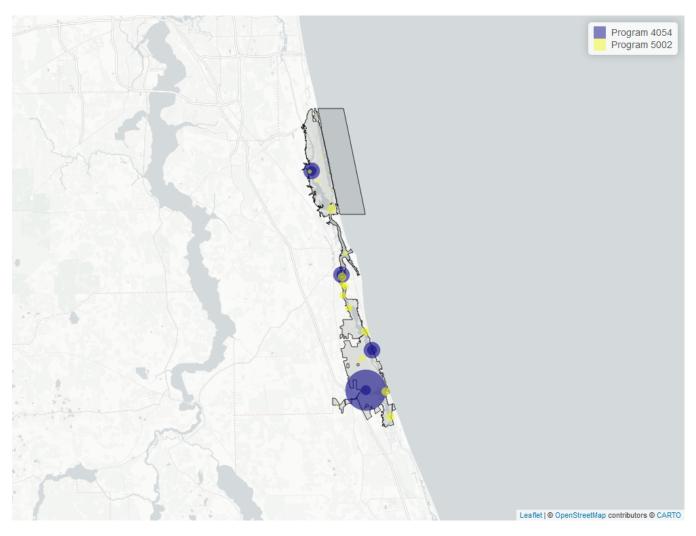


Figure 6: Map showing location of Discrete sampling sites for Colored Dissolved Organic Matter. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 11: Programs contributing data for Colored Dissolved Organic Matter

ProgramID	N_Data	YearMin	YearMax
4054	1506	2007	2024
5002	306	2020	2024
5014	7	2018	2018

4054 - Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

5002 - Florida STORET / $\rm WIN^2$

5014 - Guana River and Guana Lake Water Quality Monitoring³

Dissolved Oxygen - Discrete Water Quality

Dissolved Oxygen - Discrete, All Depths Guana Tolomato Matanzas National Estuarine Research Reserve

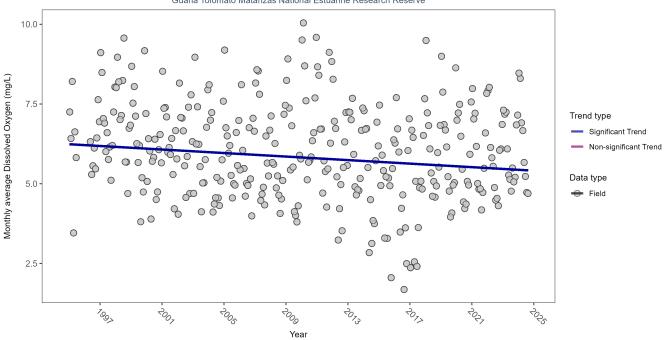


Figure 7: Seasonal Kendall-Tau Results for Dissolved Oxygen - Discrete

Table 12: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	SennIntercept	ChiSquared	${\it pChiSquared}$	Trend
All	22353	30	6	TRUE	-0.1735	0	-0.0276	6.2392	18.7761	0.0652	-1

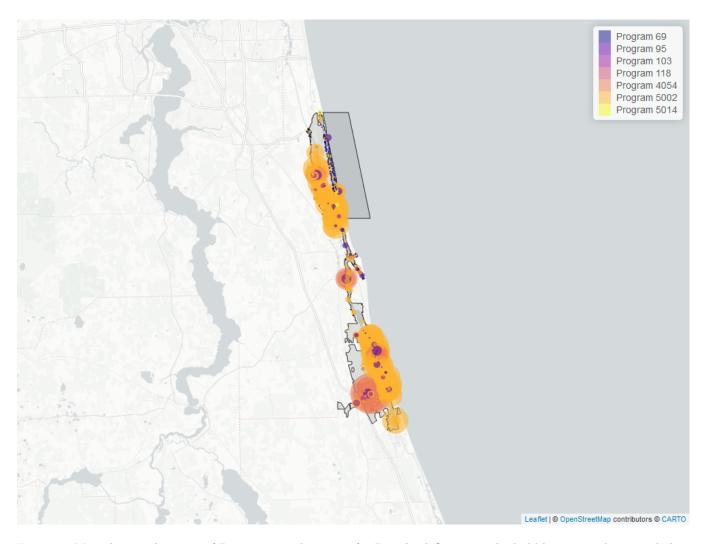


Figure 8: Map showing location of Discrete sampling sites for Dissolved Oxygen. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 13: Programs contributing data for Dissolved Oxygen

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	18112	1995	2024
4054	3469	2002	2024
95	400	2007	2018
5014	260	2017	2022
69	185	2001	2010
103	168	2020	2021
118	2	2006	2015

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 95- Harmful Algal Bloom Marine Observation Network 4
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁵
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁶
- 4054 Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

Dissolved Oxygen Saturation - Discrete Water Quality

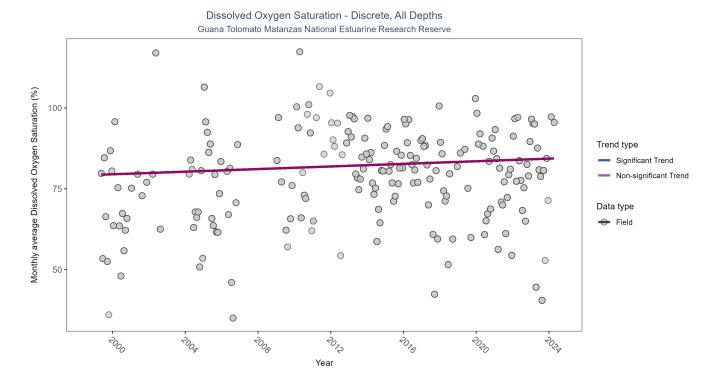


Figure 9: Seasonal Kendall-Tau Results for Dissolved Oxygen Saturation - Discrete

Table 14: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen Saturation

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	2346	23	81.2	TRUE	0.0876	0.0959	0.2015	79.2681	5.9269	0.8782	0

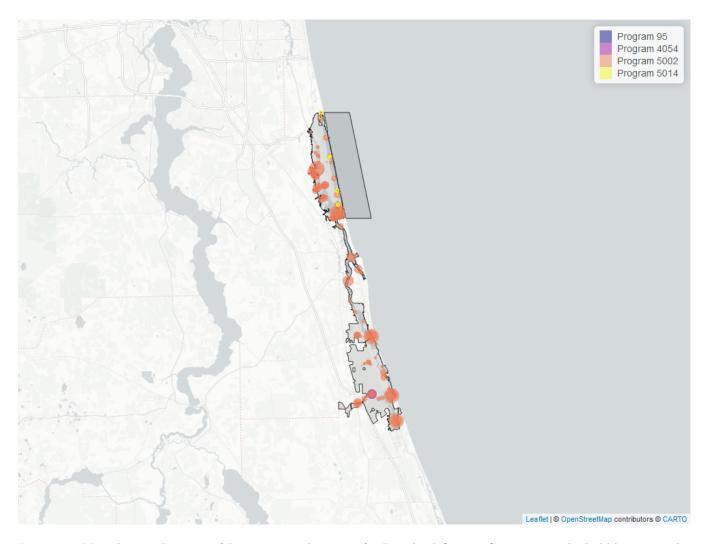


Figure 10: Map showing location of Discrete sampling sites for Dissolved Oxygen Saturation. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 15: Programs contributing data for Dissolved Oxygen Saturation

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	2103	1999	2024
5014	238	2017	2022
4054	48	2021	2023
95	3	2012	2013

95- Harmful Algal Bloom Marine Observation Network 4

4054 - Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

5002 - Florida STORET / WIN²

5014 - Guana River and Guana Lake Water Quality Monitoring 3

pH - Discrete Water Quality

pH - Discrete, All Depths Guana Tolomato Matanzas National Estuarine Research Reserve

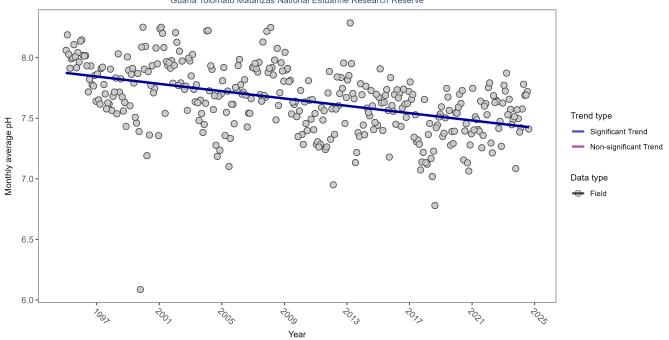


Figure 11: Seasonal Kendall-Tau Results for pH - Discrete

Table 16: Seasonal Kendall-Tau Trend Analysis for pH

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	SennIntercept	ChiSquared	${\it pChiSquared}$	Trend
All	18639	30	7.8	TRUE	-0.3862	0	-0.0151	7.8739	2.4389	0.9963	-1

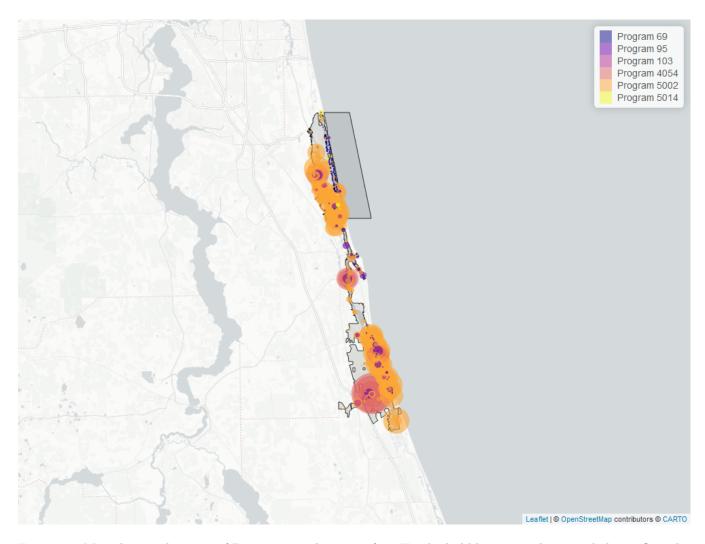


Figure 12: Map showing location of Discrete sampling sites for pH. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 17: Programs contributing data for pH

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	14729	1995	2024
4054	3507	2002	2024
95	401	2007	2018
5014	267	2017	2022
69	190	2001	2010
103	168	2020	2021

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 95- Harmful Algal Bloom Marine Observation $\rm Network^4$
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX 5
- 4054 Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹
- 5002 Florida STORET / WIN²
- 5014 Guana River and Guana Lake Water Quality Monitoring³

Salinity - Discrete Water Quality

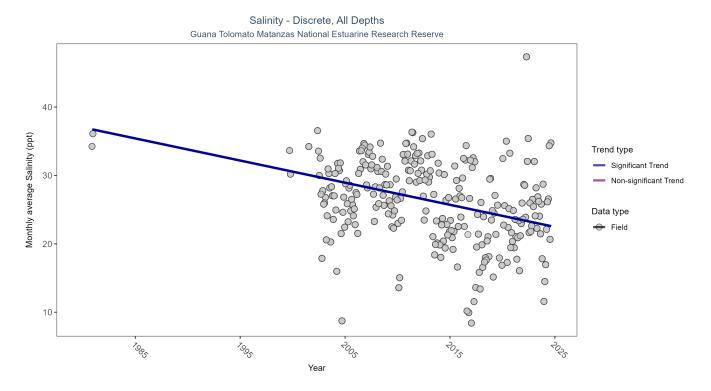


Figure 13: Seasonal Kendall-Tau Results for Salinity - Discrete

Table 18: Seasonal Kendall-Tau Trend Analysis for Salinity

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	SennIntercept	ChiSquared	${\it pChiSquared}$	Trend
All	25596	31	31.725	TRUE	-0.3614	0	-0.3235	37.0306	4.5106	0.9525	-1

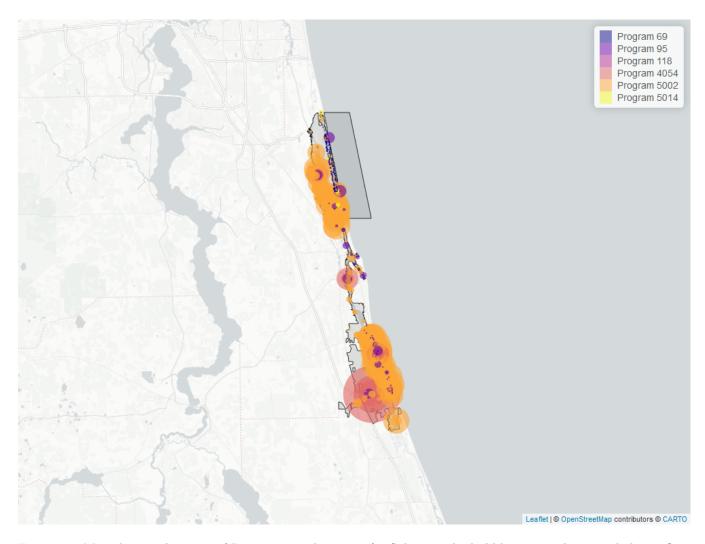


Figure 14: Map showing location of Discrete sampling sites for Salinity. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 19: Programs contributing data for Salinity

ProgramID	N_Data	YearMin	YearMax
5002	20775	1995	2024
4054	4083	2002	2024
95	563	1980	2018
5014	267	2017	2022
69	190	2001	2010
118	2	2015	2015

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 95- Harmful Algal Bloom Marine Observation Network 4
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁶
- 4054 Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹
- 5002 Florida STORET / WIN²
- 5014 Guana River and Guana Lake Water Quality Monitoring³

Secchi Depth - Discrete Water Quality

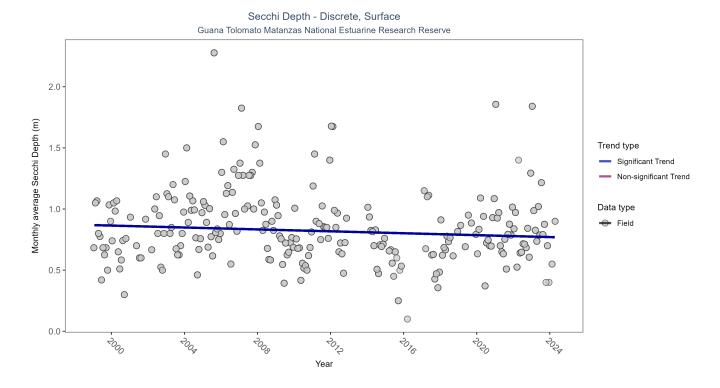


Figure 15: Seasonal Kendall-Tau Results for Secchi Depth - Discrete

Table 20: Seasonal Kendall-Tau Trend Analysis for Secchi Depth

RelativeDepth	N-Data	N-Years	Median	Independent	tau	p	SennSlope	SennIntercept	${\it ChiSquared}$	${\it pChiSquared}$	Trend
Surface	2867	25	0.8	TRUE	-0.0978	0.042	-0.0039	0.8685	15.7093	0.1523	-1

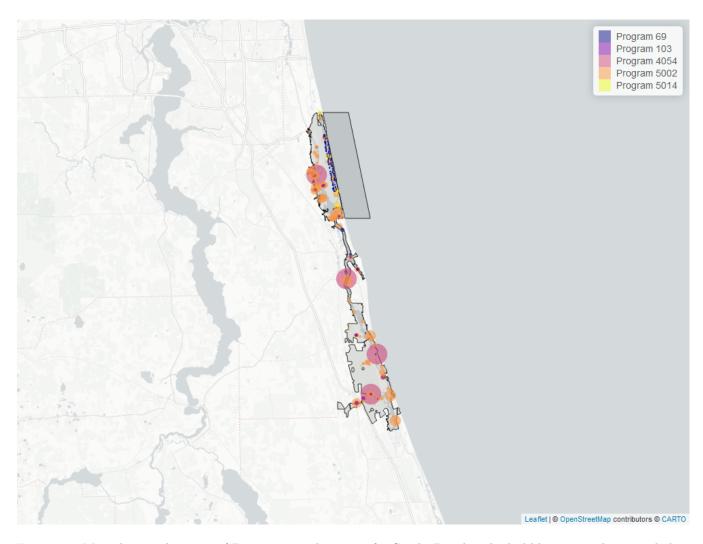


Figure 16: Map showing location of Discrete sampling sites for Secchi Depth. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 21: Programs contributing data for Secchi Depth

ProgramID	N_Data	YearMin	YearMax
5002	1420	1999	2024
4054	937	2002	2014
5014	228	2017	2022
69	190	2001	2010
103	93	2020	2021

- 69 Fisheries-Independent Monitoring (FIM) Program⁷
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX 5
- 4054 Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹
- 5002 Florida STORET / WIN²
- 5014 Guana River and Guana Lake Water Quality Monitoring³

Total Nitrogen - Discrete Water Quality

Total Nitrogen Calculation:

The logic for calculated Total Nitrogen was provided by Kevin O'Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.

- 1) TN = TKN + NO3O2;
- 2) TN = TKN + NO3 + NO2;
- 3) TN = ORGN + NH4 + NO3O2;
- 4) TN = ORGN + NH4 + NO2 + NO3;
- 5) TN = TKN + NO3;
- 6) TN = ORGN + NH4 + NO3;

Additional Information:

- Rules for use of sample fraction:
 - Florida Department of Environmental Protection (FDEP) report that if both "Total" and "Dissolved" components are reported, only "Total" is used. If the total is not reported, then the dissolved components are used as a best available replacement.
 - Total nitrogen calculations are done using nitrogen components with the same sample fraction, nitrogen components with mixed total/dissolved sample fractions are not used. In other words, total nitrogen can be calculated when TKN and NO3O2 are both total sample fractions, or when both are dissolved sample fractions. Future calculations of total nitrogen values may be based on components with mixed sample fractions.
- Values inserted into data:
 - ParameterName = "Total Nitrogen"
 - SEACAR_QAQCFlagCode = "1Q"
 - SEACAR_QAQC_Description = "SEACAR Calculated"

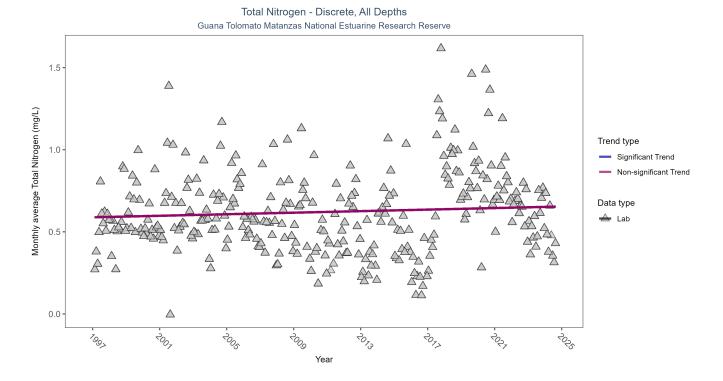


Figure 17: Seasonal Kendall-Tau Results for Total Nitrogen - Discrete

Table 22: Seasonal Kendall-Tau Trend Analysis for Total Nitrogen

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	${\bf Senn Intercept}$	ChiSquared	${\it pChiSquared}$	Trend
All	5911	28	0.552	TRUE	0.061	0.1276	0.0023	0.5885	2.8199	0.9929	0

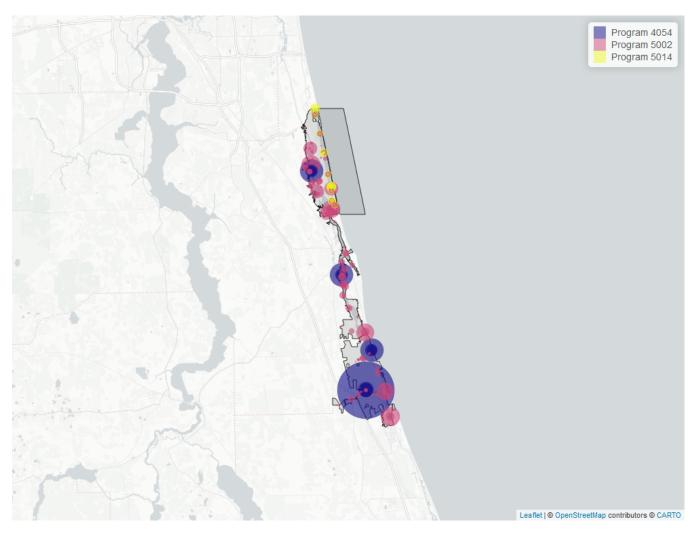


Figure 18: Map showing location of Discrete sampling sites for Total Nitrogen. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 23: Programs contributing data for Total Nitrogen

ProgramID	N_Data	YearMin	YearMax
4054	3222	2002	2024
5002	2334	1997	2024
5014	537	2017	2022

4054 - Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

5002 - Florida STORET / WIN 2

5014 - Guana River and Guana Lake Water Quality Monitoring³

Total Phosphorus - Discrete Water Quality

Total Phosphorus - Discrete, All Depths

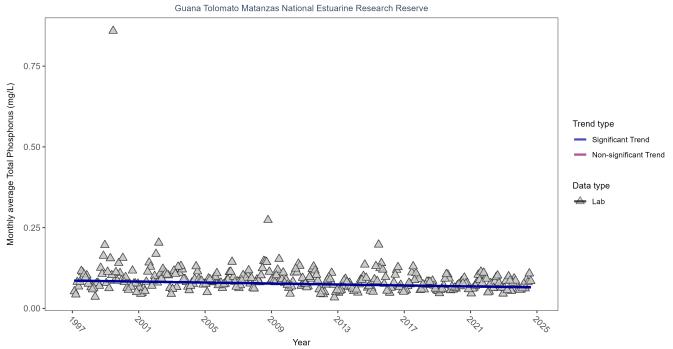


Figure 19: Seasonal Kendall-Tau Results for Total Phosphorus - Discrete

Table 24: Seasonal Kendall-Tau Trend Analysis for Total Phosphorus

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	${\bf Senn Intercept}$	${\it ChiSquared}$	${\it pChiSquared}$	Trend
All	9296	28	0.072	TRUE	-0.209	0	-0.0008	0.0861	6.0654	0.869	-1

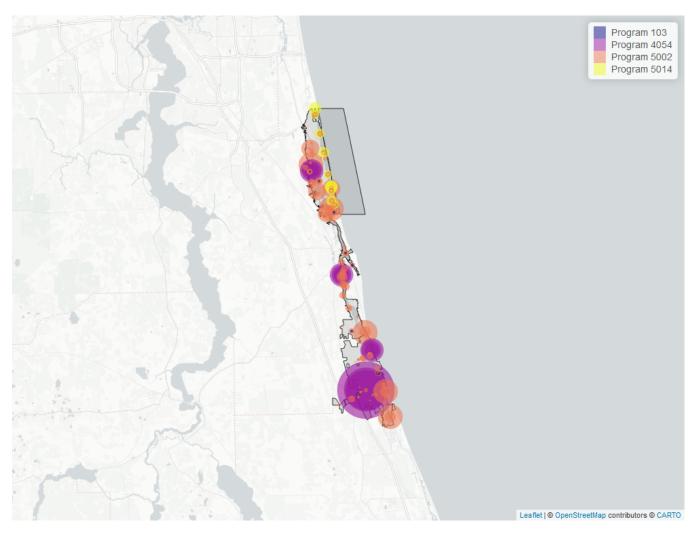


Figure 20: Map showing location of Discrete sampling sites for Total Phosphorus. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 25: Programs contributing data for Total Phosphorus

ProgramID	N_Data	YearMin	YearMax
4054	5361	2002	2024
5002	3541	1997	2024
5014	664	2017	2024
103	59	2020	2021

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁵

4054 - Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

5002 - Florida STORET / WIN²

5014 - Guana River and Guana Lake Water Quality Monitoring³

Total Suspended Solids - Discrete Water Quality

Total Suspended Solids - Discrete, All Depths Guana Tolomato Matanzas National Estuarine Research Reserve

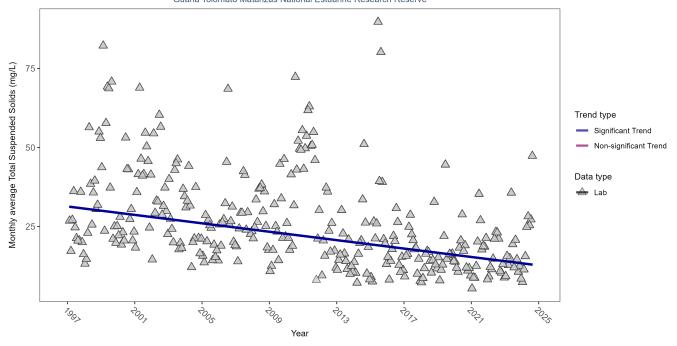


Figure 21: Seasonal Kendall-Tau Results for Total Suspended Solids - Discrete

Table 26: Seasonal Kendall-Tau Trend Analysis for Total Suspended Solids

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	4961	28	17	TRUE	-0.3896	0	-0.6658	31.3471	6.8434	0.8116	-1

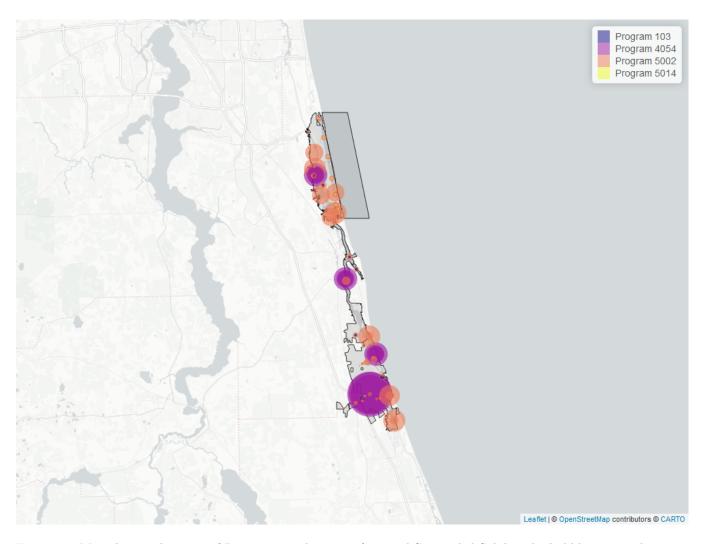


Figure 22: Map showing location of Discrete sampling sites for Total Suspended Solids. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 27: Programs contributing data for Total Suspended Solids

$\overline{ProgramID}$	N_Data	YearMin	YearMax
4054	4605	2002	2024
5002	2466	1997	2024
5014	126	2018	2022
103	60	2020	2021

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁵

4054 - Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

5002 - Florida STORET / WIN²

5014 - Guana River and Guana Lake Water Quality Monitoring³

Turbidity - Discrete Water Quality

Turbidity - Discrete, All Depths Guana Tolomato Matanzas National Estuarine Research Reserve

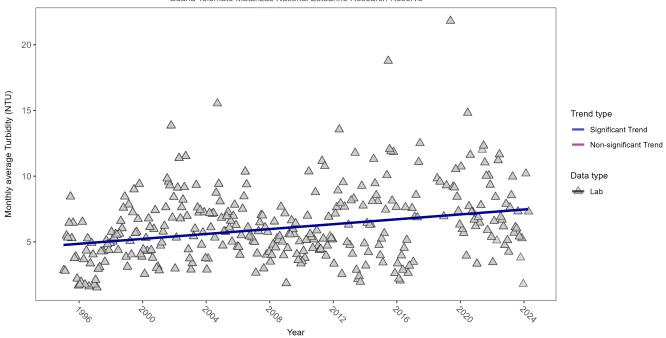


Figure 23: Seasonal Kendall-Tau Results for Turbidity - Discrete

Table 28: Seasonal Kendall-Tau Trend Analysis for Turbidity

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	$_{\mathrm{tau}}$	p	SennSlope	${\bf Senn Intercept}$	${\it ChiSquared}$	${\it pChiSquared}$	Trend
All	14790	30	4.5	TRUE	0.238	0	0.0931	4.7606	8.0495	0.7089	1

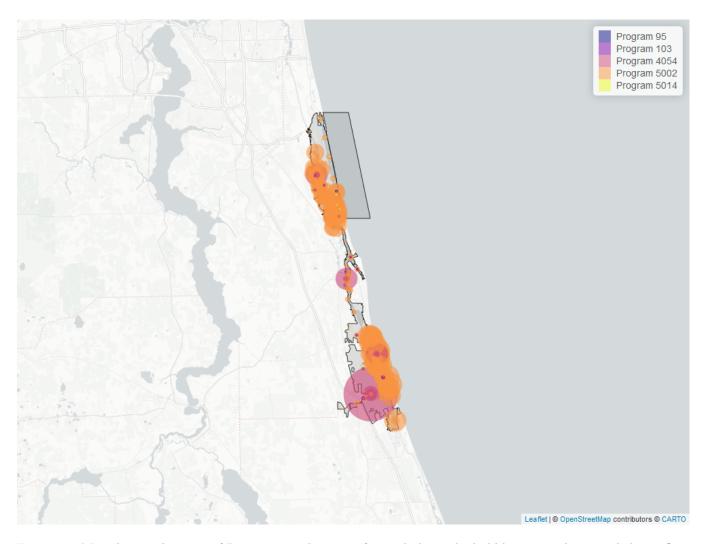


Figure 24: Map showing location of Discrete sampling sites for Turbidity. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 29: Programs contributing data for Turbidity

ProgramID	N_Data	YearMin	YearMax
5002	14570	1995	2024
4054	2683	2002	2021
5014	126	2018	2022
103	59	2020	2021
95	4	2012	2012

95 - Harmful Algal Bloom Marine Observation Network⁴

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX 5

4054 - Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹

5002 - Florida STORET / WIN²

5014 - Guana River and Guana Lake Water Quality Monitoring³

Water Temperature - Discrete Water Quality

Water Temperature - Discrete, All Depths Guana Tolomato Matanzas National Estuarine Research Reserve

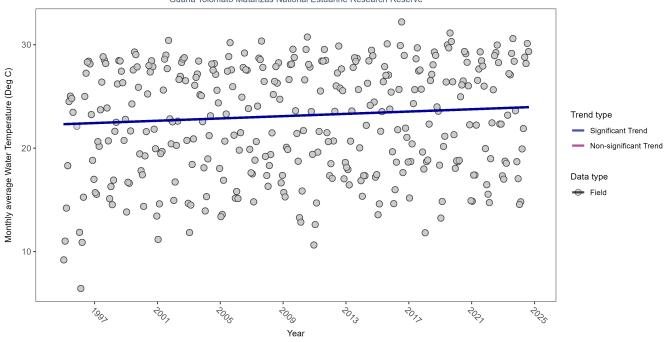


Figure 25: Seasonal Kendall-Tau Results for Water Temperature - Discrete

Table 30: Seasonal Kendall-Tau Trend Analysis for Water Temperature

${\bf Relative Depth}$	N-Data	N-Years	Median	Independent	tau	p	SennSlope	${\bf Senn Intercept}$	${\it ChiSquared}$	${\it pChiSquared}$	Trend
All	25244	30	23.3	TRUE	0.2236	0	0.0556	22.3162	17.3004	0.0993	1

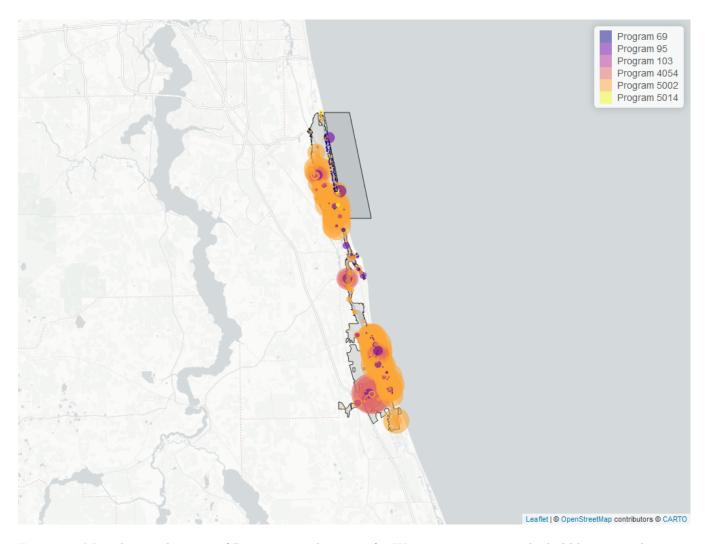


Figure 26: Map showing location of Discrete sampling sites for Water Temperature. The bubble size on the maps below reflect the amount of data available at each sampling site.

Table 31: Programs contributing data for Water Temperature

$\overline{ProgramID}$	N_Data	YearMin	YearMax
5002	21270	1995	2024
4054	3582	2002	2024
95	534	2007	2018
5014	267	2017	2022
69	190	2001	2010
103	168	2020	2021

- 69 Fisheries-Independent Monitoring (FIM) $\rm Program^7$
- 95- Harmful Algal Bloom Marine Observation Network 4
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX 5
- 4054 Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program¹
- 5002 Florida STORET / WIN²
- 5014 Guana River and Guana Lake Water Quality Monitoring 3

Water Quality - Continuous

The following files were used in the continuous analysis:

- $\bullet \ \ Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_NE-2024-Dec-08.txt$
- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_Saturation_NE-2024-Dec-08.txt
- $\bullet \quad Combined_WQ_WC_NUT_cont_pH_NE-2024-Dec-08.txt$
- Combined_WQ_WC_NUT_cont_Salinity_NE-2024-Dec-08.txt
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Turbidity_NE-2024-Dec-08.txt$
- $\bullet \ \ Combined_WQ_WC_NUT_cont_Water_Temperature_NE-2024-Dec-08.txt$

Continuous monitoring locations in Guana Tolomato Matanzas National Estuarine Research Reserve

Table 32: Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program (4054)

ProgramLocationID	Years of Data	Use in Analysis	Parameters
gtmfmwq	24	TRUE	DO , DOS , pH , Sal , Turb , TempW
$\operatorname{gtmpcwq}$	24	TRUE	DO , DOS , pH , Sal , Turb , TempW
$\operatorname{gtmpiwq}$	24	TRUE	DO , DOS , pH , Sal , Turb , TempW
$\operatorname{gtmsswq}$	23	TRUE	DO , DOS , pH , Sal , Turb , TempW

Table 33: FDEP Bureau of Survey and Mapping Continuous Water Quality Program (5062)

$\overline{ProgramLocationID}$	Years of Data	Use in Analysis	Parameters
872-0494	2	FALSE	Sal , TempW

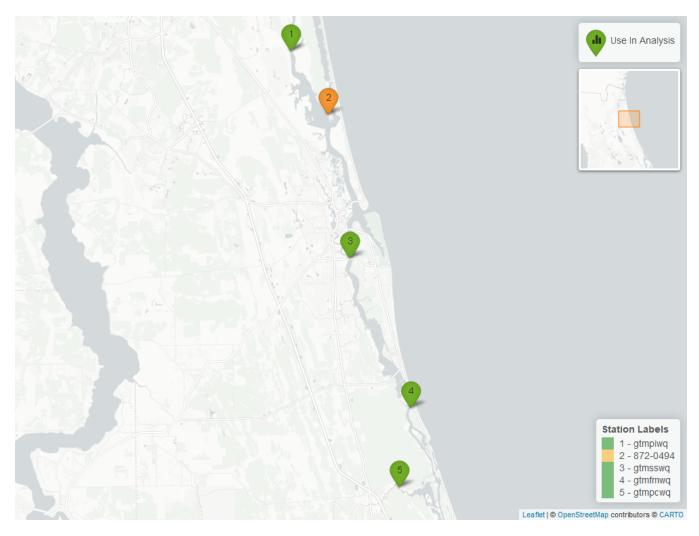


Figure 27: Map showing Continuous Water Quality Monitoring sampling locations within the boundaries of Guana Tolomato Matanzas National Estuarine Research Reserve. Sites marked as *Use In Analysis* are featured in this report.

Dissolved Oxygen - All Stations Combined

Guana Tolomato Matanzas National Estuarine Research Reserve All Stations

Dissolved Oxygen - Continuous \Diamond 8 Monthly average Dissolved Oxygen (mg/L) Trend type Significant Trend Non-significant Trend Program location gtmfmwq - bottom gtmpcwq - bottom gtmpiwq - bottom gtmsswq - bottom 7025 7007 7005 7000 70/3 7027 2072 Year

Figure 28: Figure for Dissolved Oxygen - Continuous - All stations combined

Table 34: Seasonal Kendall-Tau Results for All Stations - Dissolved Oxygen

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	p
gtmsswq	651882	23	2002 - 2024	6.3	0.08	5.94	0.01	0.0701
gtmpcwq	694170	24	2001 - 2024	5.5	0.04	5.23	0.00	0.3089
$\operatorname{gtmpiwq}$	657932	24	2001 - 2024	5.9	-0.11	5.75	-0.01	0.0126
$\operatorname{gtmfmwq}$	673507	24	2001 - 2024	6.4	0.07	6.29	0.00	0.0860

Dissolved Oxygen Saturation - All Stations Combined

Guana Tolomato Matanzas National Estuarine Research Reserve All Stations

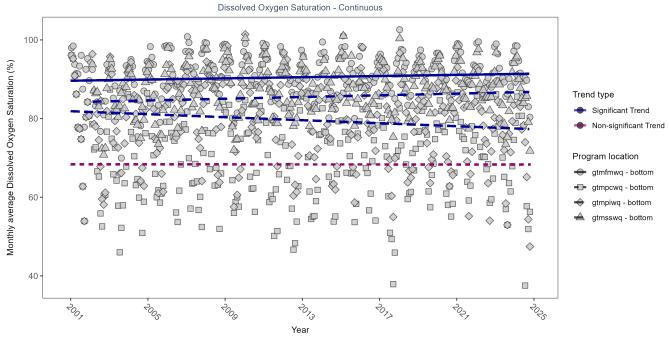


Figure 29: Figure for Dissolved Oxygen Saturation - Continuous - All stations combined

Table 35: Seasonal Kendall-Tau Results for All Stations - Dissolved Oxygen Saturation

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	p
gtmpcwq	695663	24	2001 - 2024	71.2	-0.01	68.37	0.00	0.9536
gtmsswq	657818	23	2002 - 2024	89.4	0.14	84.28	0.11	0.0019
$\operatorname{gtmfmwq}$	685174	24	2001 - 2024	92.6	0.13	89.62	0.07	0.0029
$\operatorname{gtmpiwq}$	663744	24	2001 - 2024	82.2	-0.19	81.87	-0.19	0.0000

pH - All Stations Combined

Guana Tolomato Matanzas National Estuarine Research Reserve All Stations pH - Continuous 9 -Trend type Significant Trend Monthly average pH Non-significant Trend Program location gtmfmwq - bottom gtmpcwq - bottom gtmpiwq - bottom gtmsswq - bottom 2007 7005 7075 7025 7073 7027

Figure 30: Figure for pH - Continuous - All stations combined

Year

. 2009

Table 36: Seasonal Kendall-Tau Results for All Stations - pH

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	p
gtmsswq	627587	23	2002 - 2024	7.9	0.03	7.84	0.00	0.4181
$\operatorname{gtmpiwq}$	654000	24	2001 - 2024	7.6	-0.17	7.61	0.00	0.0001
gtmpcwq	687239	24	2001 - 2024	7.4	-0.12	7.45	-0.01	0.0048
$\operatorname{gtmfmwq}$	659640	24	2001 - 2024	8.0	-0.15	7.98	0.00	0.0007

Salinity - All Stations Combined

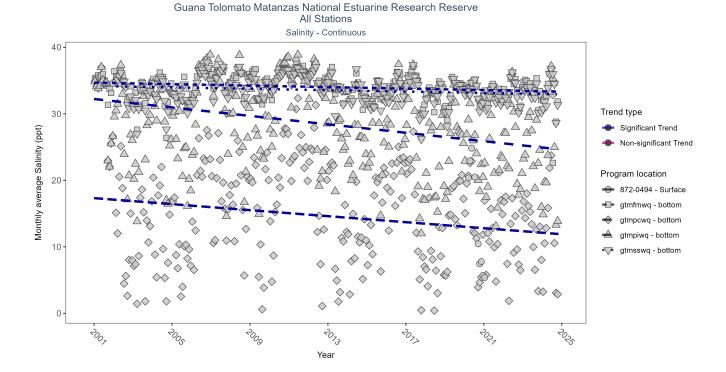


Figure 31: Figure for Salinity - Continuous - All stations combined

Table 37: Seasonal Kendall-Tau Results for All Stations - Salinity

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	p
gtmpiwq	659986	24	2001 - 2024	28.00	-0.26	32.23	-0.32	0.0000
gtmsswq	636557	23	2002 - 2024	34.00	-0.11	34.13	-0.05	0.0131
$\operatorname{gtmpcwq}$	703730	24	2001 - 2024	16.70	-0.14	17.32	-0.23	0.0015
$\operatorname{gtmfmwq}$	660962	24	2001 - 2024	34.40	-0.15	34.69	-0.06	0.0003
872-0494	34918	2	2020 - 2021	8.99	-	-	-	-

Turbidity - All Stations Combined

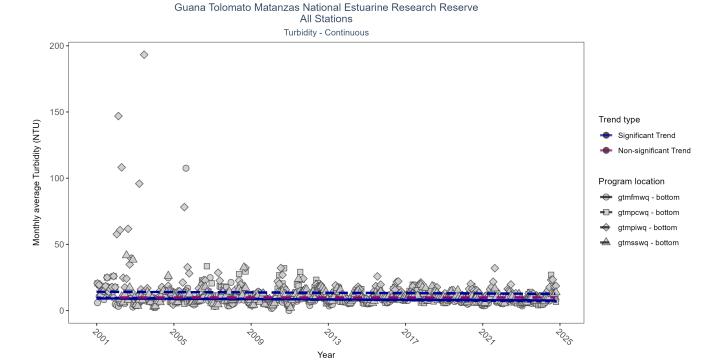


Figure 32: Figure for Turbidity - Continuous - All stations combined

Table 38: Seasonal Kendall-Tau Results for All Stations - Turbidity

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	p
gtmsswq	623179	23	2002 - 2024	9	0.01	9.87	0.00	0.9808
$\operatorname{gtmfmwq}$	670954	24	2001 - 2024	7	-0.11	9.18	-0.06	0.0082
$\operatorname{gtmpcwq}$	678303	24	2001 - 2024	9	-0.17	9.72	-0.11	0.0001
$\operatorname{gtmpiwq}$	633953	24	2001 - 2024	11	-0.09	14.24	-0.07	0.0407

Water Temperature - All Stations Combined

Guana Tolomato Matanzas National Estuarine Research Reserve All Stations

Water Temperature - Continuous 30 Monthly average Water Temperature (Deg C) Trend type Significant Trend 25 Non-significant Trend **₽** Program location 872-0494 - Surface 20 gtmfmwq - bottom gtmpcwq - bottom gtmpiwq - bottom gtmsswq - bottom \forall 10 \triangle 7005 7073 + 2025 700, 7000 2017 . کی Year

Figure 33: Figure for Water Temperature - Continuous - All stations combined

Table 39: Seasonal Kendall-Tau Results for All Stations - Water Temperature

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	p
gtmfmwq	704620	24	2001 - 2024	23.80	0.25	23	0.05	0.0000
$\operatorname{gtmpcwq}$	712296	24	2001 - 2024	24.40	0.15	23.8	0.04	0.0004
$\operatorname{gtmpiwq}$	710270	24	2001 - 2024	24.30	0.2	23.43	0.04	0.0000
$\operatorname{gtmsswq}$	670158	23	2002 - 2024	23.90	0.25	22.91	0.06	0.0000
872 - 0494	35473	2	2020 - 2021	22.34	-	-	-	-

Coastal Wetlands

1.6

1.4

The data file used is: $All_CW_Parameters-2024-Dec-08.txt$

Coastal Wetlands Species Richness Guana Tolomato Matanzas National Estuarine Research Reserve

Species group

Mangroves and associates

Richness (# of species) Marsh Marsh succulents 1.2 1.0 7073 - PO-25 Year

Figure 34: Figure for Coastal Wetlands Species Richness in Guana Tolomato Matanzas National Estuarine Research Reserve

Table 40: Coastal Wetlands Species Richness

Species Group	Sample Count	Number of Years	Period of Record	Median N of Taxa	Mean N of Taxa
Mangroves and associates	387	12	2012 - 2023	1	1.02
Marsh	1773	12	2012 - 2023	1	1.17
Marsh succulents	810	12	2012 - 2023	1	1.40

Oyster

The data file used is: $All_OYSTER_Parameters-2024-Dec-08.txt$

Density

Natural

Figure 35: Figure for Oyster Density in Guana Tolomato Matanzas National Estuarine Research Reserve

Year

Table 41: Model results for Oyster Density - Natural

Shell Type	$Habitat\ Type$	Trend Status	Estimate	$Standard\ Error$	$Credible\ Interval$
Live Oyster Shells	Natural	No significant change	0.11	0.07	-0.02 to 0.25

Percent Live

Natural

Oyster Percent Live Cover
Guana Tolomato Matanzas National Estuarine Research Reserve

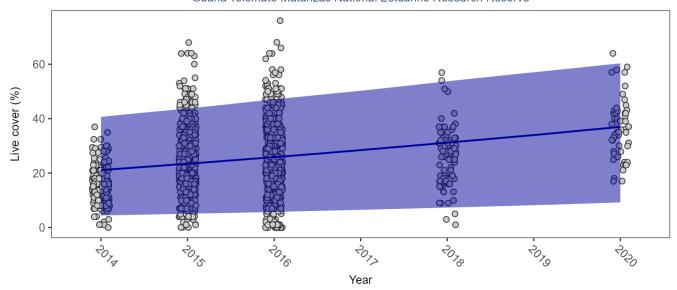


Figure 36: Figure for Oyster Percent Live in Guana Tolomato Matanzas National Estuarine Research Reserve

Table 42: Model results for Oyster Percent Live - Natural

$Shell\ Type$	$Habitat\ Type$	Trend Status	Estimate	$Standard\ Error$	$Credible\ Interval$
Live Oyster Shells	Natural	Significantly increasing trend	0.13	0.01	0.11 to 0.15

Shell Height

Natural

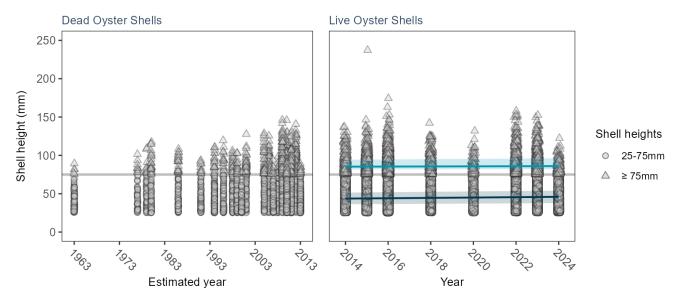


Figure 37: Figure for Oyster Shell Height in Guana Tolomato Matanzas National Estuarine Research Reserve

Table 43: Model results for Oyster Shell Height - Natural

Shell Type	Habitat Type	Trend Status	Estimate	Standard Error	Credible Interval
Dead Oyster Shells	Natural	-	-	-	NA to NA
Dead Oyster Shells	Natural	-	-	-	NA to NA
Dead Oyster Shells	Natural	-	-	-	NA to NA
Live Oyster Shells	Natural	No significant change	2.62	1.43	-0.13 to 5.6
Live Oyster Shells	Natural	Significantly increasing trend	2.29	1.04	0.34 to 4.44
Live Oyster Shells	Natural	-	-	-	NA to NA

References

- Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Guana Tolomato Matanzas National Estuarine Research Reserve (GTMNERR); NOAA National Estuarine Research Reserve System (NERRS). Guana Tolomato Matanzas National Estuarine Research Reserve System-Wide Monitoring Program. (2024).
- 2. Florida Department of Environmental Protection (DEP). Florida STORET / WIN. (2024).
- 3. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Guana Tolomato Matanzas National Estuarine Research Reserve (GTMNERR); Friends of GTM; Florida Fish and Wildlife Conservation Commission (FWC). Guana River and Guana Lake Water Quality Monitoring . (2024).
- 4. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). Harmful Algal Bloom Marine Observation Network. (2018).
- 5. U.S. Environmental Protection Agency (EPA). EPA STOrage and RETrieval Data Warehouse (STORET)/WQX. (2023).
- 6. U.S. Environmental Protection Agency (EPA); Office of Water; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); National Estuary Program (NEP); coastal states. National Aquatic Resource Surveys, National Coastal Condition Assessment. (2021).
- 7. Florida Fish and Wildlife Conservation Commission (FWC). Fisheries-Independent Monitoring (FIM) Program. (2022).