Cape Romano-Ten Thousand Islands Aquatic Preserve SEACAR Habitat Analyses

Last compiled on 08 January, 2025

Contents	
Funding & Acknowledgements	2
Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Water Quality - Discrete Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality Dissolved Oxygen - Discrete Water Quality Dissolved Oxygen Saturation - Discrete Water Quality pH - Discrete Water Quality Salinity - Discrete Water Quality Total Nitrogen - Discrete Water Quality Total Suspended Solids - Discrete Water Quality Turbidity - Discrete Water Quality Water Temperature - Discrete Water Quality	5 6 7 10 12 13 15 18 20 22 24 26
Water Quality - Continuous Selection Dissolved Oxygen - All Stations Combined Dissolved Oxygen Saturation - All Stations Combined Dissolved Oxygen Saturation - All Stations Combined pH - All Stations Combined Salinity - All Stations Combined by Program Selection Salinity - All Stations Combined by Program Selection Selection Turbidity - All Stations Combined Selection Selection Water Temperature - All Stations Combined by Program Selection Selection Water Temperature - All Stations Combined by Program Selection Selection	 29 31 32 33 34 35 36 37 38
Nekton	39

References

40

Funding & Acknowledgements

The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.

With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.

Published: 2025-01-08

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (*FDEP*) Division of Environmental Assessment and Restoration (*DEAR*) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (*QAQC*) Flags are inserted into the *SEACAR_QAQCFlagCode* and *SEACAR_QAQC_Description* columns of the export data. The *Include* column indicates whether the *QAQC* Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the *Include* column to exclude data (1 to include, 0 to exclude).

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	50
Dissolved Oxygen Saturation	%	-0.000001	500
Salinity	ppt	-0.000001	70
Turbidity	NTU	-0.000001	4000
Water Temperature	Degrees C	-5.000000	45
pH	None	2.000000	14

Table 1: Continuous Water Quality threshold values

Table 2:	Discrete	Water	Quality	threshold	values	

Parameter Name	Units	Low Threshold	High Threshold
Ammonia, Un-ionized (NH3)	mg/L	-	-
Ammonium, Filtered (NH4)	mg/L	-	-
Chlorophyll a, Corrected for Pheophytin	ug/L	-	-
Chlorophyll a, Uncorrected for Pheophytin	ug/L	-	-
Colored Dissolved Organic Matter	PCU	-	-

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	25
Dissolved Oxygen Saturation	%	-0.000001	310
Fluorescent Dissolved Organic Matter	QSE	-	-
Light Extinction Coefficient	m^-1	-	-
NO2+3, Filtered	$\mathrm{mg/L}$	-	-
Nitrate (NO3)	$\mathrm{mg/L}$	-	-
Nitrite (NO2)	$\mathrm{mg/L}$	-	-
Nitrogen, organic	$\mathrm{mg/L}$	-	-
Phosphate, Filtered (PO4)	m mg/L	-	-
Salinity	ppt	-0.000001	70
Secchi Depth	m	0.000001	50
Specific Conductivity	$\mathrm{mS/cm}$	0.005000	100
Total Kjeldahl Nitrogen	m mg/L	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	m mg/L	-	-
Total Phosphorus	$\mathrm{mg/L}$	-	-
Total Suspended Solids	$\mathrm{mg/L}$	-	-
Turbidity	NTU	-	-
Water Temperature	Degrees C	3.000000	40
pH	None	2.000000	13

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 and 2

SEACAR QAQC Description	Include	SEACAR QAQCFlagCode
Exceeds maximum threshold	0	2Q
Below minimum threshold	0	4Q
Within threshold tolerance	1	6Q
No defined thresholds for this parameter	1	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from *STORET* and *WIN* data are examined with the database and used to populate the *Include* column in data exports.

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	0	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	0	0	Estimated value
STORET-WIN	V	0	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	0	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Table 4: Value Qualifier codes excluded from analysis

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - *Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network* and data flagged with Value Qualifier **H** are included for this program only.

 \mathbf{H} - Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.

 ${\bf I}$ - The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.

 \mathbf{Q} - Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.

 ${f S}$ - Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.

U - Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the *SWMP* continuous program are examined with the database and used to populate the *Include* column in data exports. *SWMP* Qualifier Codes are indicated by *QualifierSource=SWMP*.

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	Yes	Optional parameter not collected
SWMP	-2	No	Missing data
SWMP	-3	No	Data rejected due to QA/QC
SWMP	-4	No	Outside low sensor range
SWMP	-5	No	Outside high sensor range
SWMP	0	Yes	Passed initial QA/QC checks
SWMP	1	No	Suspect data
SWMP	2	Yes	Reserved for future use
SWMP	3	Yes	Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
SWMP	4	Yes	Historical: Pre-auto QA/QC
SWMP	5	Yes	Corrected data

Table	5:	SWMP	Value	Qualifier	codes
rabic	.	D V V IVII	varue	Quannor	COUCS

Water Column

The water column habitat extends from the water's surface to the bottom sediments, and it's where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.

SEACAR evaluates water column health with several essential parameters. These include nutrient surveys of nitrogen and phosphorus, andwater quality assessments of salinity, dissolved oxygen, pH, and water temperature. Water clarity is evaluated with Secchi depth, turbidity, levels of chlorophyll a, total suspended solids, and colored dissolved organic matter. Additionally, the richness of nekton is indicated by the abundance of free-swimming fishes and macroinvertebrates like crabs and shrimps.

Seasonal Kendall-Tau Analysis

Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as "Significant Trend" (when p < 0.05), or "Non-significant Trend" (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.

Water Quality - Discrete

The following files were used in the discrete analysis:

- $\bullet \ \ Combined_WQ_WC_NUT_Chlorophyll_a_corrected_for_pheophytin-2024-Dec-08.txt\\$
- Combined_WQ_WC_NUT_Chlorophyll_a_uncorrected_for_pheophytin-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen_Saturation-2024-Dec-08.txt
- Combined_WQ_WC_NUT_pH-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Salinity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Secchi_Depth-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Nitrogen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Phosphorus-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Turbidity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Water_Temperature-2024-Dec-08.txt

Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

Figure 1: Seasonal Kendall-Tau Results for Chlorophyll a, Corrected for Pheophytin - Discrete

Table 6:	Seasonal	Kendall-Tau	Trend	Analysis	for C	Chlorophyll a.	Corrected	for Pheophytin
								· · · · · · · · · · · · · · · · · · ·

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	585	14	3.7	TRUE	0.0685	0.3002	0.0361	3.2164	7.4413	0.7623	0

Figure 2: Map showing location of Discrete sampling sites for Chlorophyll a, Corrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
354	529	2012	2024
5002	68	2002	2021

 Table 7: Programs contributing data for Chlorophyll a, Corrected for Pheophytin

Program names:

354- Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program 1 5002- Florida STORET / WIN^2

Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality

Figure 3: Seasonal Kendall-Tau Results for Chlorophyll a, Uncorrected for Pheophytin - Discrete

Table 8: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Uncorrected for Pheophytin

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	2142	29	3.6014	TRUE	0.2597	0	0.0718	3.2262	6.8382	0.812	1

Figure 4: Map showing location of Discrete sampling sites for Chlorophyll a, Uncorrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
354	2682	2002	2024
509	1512	1994	2008
5002	72	2001	2021
103	24	2021	2021
514	15	2001	2001
118	1	2010	2010

 Table 9: Programs contributing data for Chlorophyll a, Uncorrected for Pheophytin

Program names:

- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^3
- 118 National Aquatic Resource Surveys, National Coastal Condition $\operatorname{Assessment}^4$
- 354- Rookery Bay National Estuarine Research Reserve System-Wide Monitoring $\rm Program^1$
- 509 SERC Water Quality Monitoring $\rm Network^5$
- 514 Florida LAKEWATCH $\rm Program^6$
- 5002 Florida STORET / WIN^2

Dissolved Oxygen - Discrete Water Quality

Figure 5: Seasonal Kendall-Tau Results for Dissolved Oxygen - Discrete

Table 10:	Seasonal	Kendall-Tau	Trend	Analysis	for	Dissolved	Oxygen
-----------	----------	-------------	-------	----------	-----	-----------	--------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	10665	34	5.8	TRUE	-0.0863	0.0287	-0.0125	5.9716	15.5726	0.1578	-1

Figure 6: Map showing location of Discrete sampling sites for Dissolved Oxygen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	4183	1989	2024
509	2974	1994	2008
4043	2478	1999	2020
354	917	2002	2023
95	390	1997	2018
103	48	2021	2021
118	10	2015	2021

Table 11: Programs contributing data for Dissolved Oxygen

- 95 Harmful Algal Bloom Marine Observation $\rm Network^7$
- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^3
- 118 National Aquatic Resource Surveys, National Coastal Condition $\operatorname{Assessment}^4$
- 354- Rookery Bay National Estuarine Research Reserve System-Wide Monitoring $\rm Program^1$
- 509 SERC Water Quality Monitoring $\rm Network^5$

Dissolved Oxygen Saturation - Discrete Water Quality

Figure 7: Seasonal Kendall-Tau Results for Dissolved Oxygen Saturation - Discrete

Table 12: Seasonal Kendall-Tau Trend Analysis for Dissolved Oxygen Saturation

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	570	16	74.75	TRUE	0.0495	0.597	0.1062	72.2842	4.8347	0.9389	0

Figure 8: Map showing location of Discrete sampling sites for Dissolved Oxygen Saturation. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
354	829	2002	2024
5002	71	2017	2021
95	1	2008	2008

Table 13: Programs contributing data for Dissolved Oxygen Saturation

95- Harmful Algal Bloom Marine Observation Network
7354- Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program
15002- Florida STORET / WIN²

pH - Discrete Water Quality

Figure 9: Seasonal Kendall-Tau Results for pH - Discrete

Table 14:	Seasonal	Kendall-Tau	Trend	Analysis	for pH
-----------	----------	-------------	-------	----------	--------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	4605	35	7.865	TRUE	-0.2307	0	-0.0081	8.2061	13.6066	0.2555	-1

Figure 10: Map showing location of Discrete sampling sites for pH. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	3082	1989	2024
509	748	2001	2008
354	686	2002	2024
95	395	1956	2018
103	63	2021	2021

Table 15: Programs contributing data for pH

95 - Harmful Algal Bloom Marine Observation $\rm Network^7$

103 - EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^3

354 - Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program¹

509 - SERC Water Quality Monitoring Network⁵

5002 - Florida STORET / WIN²

Salinity - Discrete Water Quality

Figure 11: Seasonal Kendall-Tau Results for Salinity - Discrete

Table 16:	Seasonal	Kendall-	Tau	Trend	Analysis	for	Salinity

Relative Depth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	10977	44	31.9	TRUE	-0.0153	0.717	-0.008	31.4304	10.6373	0.4741	0

Figure 12: Map showing location of Discrete sampling sites for Salinity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	4370	1989	2024
509	2948	1994	2008
4043	2539	1999	2020
354	1105	2002	2024
95	532	1956	2018
118	8	2015	2021

Table 17: Programs contributing data for Salinity

- 95 Harmful Algal Bloom Marine Observation $\rm Network^7$
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁴
- 354- Rookery Bay National Estuarine Research Reserve System-Wide Monitoring $\rm Program^1$
- 509 SERC Water Quality Monitoring $\rm Network^5$
- 4043 RBNERR Fish Assessment^8
- 5002 Florida STORET / $\rm WIN^2$

Total Nitrogen - Discrete Water Quality

Total Nitrogen Calculation:

The logic for calculated Total Nitrogen was provided by Kevin O'Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.

- 1) TN = TKN + NO3O2;
- 2) TN = TKN + NO3 + NO2;
- 3) TN = ORGN + NH4 + NO3O2;
- 4) TN = ORGN + NH4 + NO2 + NO3;
- 5) TN = TKN + NO3;
- 6) TN = ORGN + NH4 + NO3;

Additional Information:

- Rules for use of sample fraction:
 - Florida Department of Environmental Protection (FDEP) report that if both "Total" and "Dissolved" components are reported, only "Total" is used. If the total is not reported, then the dissolved components are used as a best available replacement.
 - Total nitrogen calculations are done using nitrogen components with the same sample fraction, nitrogen components with mixed total/dissolved sample fractions are not used. In other words, total nitrogen can be calculated when TKN and NO3O2 are both total sample fractions, or when both are dissolved sample fractions. *Future calculations of total nitrogen values may be based on components with mixed sample fractions.*
- Values inserted into data:
 - ParameterName = "Total Nitrogen"
 - SEACAR_QAQCFlagCode = "1Q"
 - SEACAR_QAQC_Description = "SEACAR Calculated"

Figure 13: Seasonal Kendall-Tau Results for Total Nitrogen - Discrete

Table 18:	Seasonal	Kendall-Tau	Trend	Analysis	for	Total	Nitrogen
	10 0 0 10 0 10 0 10						

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	2468	31	0.3761	TRUE	0.1385	0.0016	0.0039	0.3711	9.2005	0.6034	1

Figure 14: Map showing location of Discrete sampling sites for Total Nitrogen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
509	1512	1994	2008
354	812	2002	2018
5002	293	1989	2024
514	35	2001	2001

Table 19: Programs contributing data for Total Nitrogen

Program names:

354 - Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program¹ 509 - SERC Water Quality Monitoring Network⁵

- 509 SERC water Quality Monitoring Net 514 Florida LAKEWATCH Program⁶
- 5002 Florida STORET / WIN²

Total Phosphorus - Discrete Water Quality

Figure 15: Seasonal Kendall-Tau Results for Total Phosphorus - Discrete

Table 20: Seasonal Kendall-Tau Trend Analysis for Total Phosphorus

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	2958	28	0.0431	TRUE	0.1557	0.0001	0.0003	0.042	2.1204	0.998	1

Figure 16: Map showing location of Discrete sampling sites for Total Phosphorus. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
509	1499	1994	2008
354	1147	2002	2024
5002	239	2002	2024
103	64	2021	2021
514	31	2001	2001

Table 21: Programs contributing data for Total Phosphorus

- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX^3
- 354 Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program¹
- 509 SERC Water Quality Monitoring $\rm Network^5$
- 514 Florida LAKEWATCH ${\rm Program}^6$
- 5002 Florida STORET / WIN^2

Total Suspended Solids - Discrete Water Quality

Figure 17: Seasonal Kendall-Tau Results for Total Suspended Solids - Discrete

Table 22: Seasonal Kendall-Tau Trend Analysis for Total Suspended Solids

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\rm SennSlope}$	SennIntercept	ChiSquared	pChiSquared	Trend
All	429	16	10	TRUE	-0.0586	0.3813	-0.0552	13.8295	13.9661	0.2349	0

Figure 18: Map showing location of Discrete sampling sites for Total Suspended Solids. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
354	819	2016	2024
5002	46	1989	2017

Table 23: Programs contributing data for Total Suspended Solids

354- Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program 1 5002- Florida STORET / WIN^2

Turbidity - Discrete Water Quality

Figure 19: Seasonal Kendall-Tau Results for Turbidity - Discrete

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf SennIntercept}$	ChiSquared	pChiSquared	Trend
All	4652	30	4	TRUE	0.1546	0.0007	0.0781	4.4264	12.6654	0.3158	1

Figure 20: Map showing location of Discrete sampling sites for Turbidity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	3142	1989	2024
509	1510	1994	2008
354	207	2002	2006
103	60	2021	2021

Table 25: Programs contributing data for Turbidity

Program names:

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX³

354 - Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program¹

509 - SERC Water Quality Monitoring Network⁵

5002 - Florida STORET / WIN^2

Water Temperature - Discrete Water Quality

Figure 21: Seasonal Kendall-Tau Results for Water Temperature - Discrete

Table 26: Seas	onal Kendall-Tau	Trend Analysis f	for Water Temperature
----------------	------------------	------------------	-----------------------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	11196	42	26.7	TRUE	0.0592	0.0994	0.0107	26.1169	14.5992	0.2016	0

Figure 22: Map showing location of Discrete sampling sites for Water Temperature. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	4581	1989	2024
509	2944	1994	2008
4043	2534	1999	2020
354	971	2002	2024
95	482	1956	2018
103	63	2021	2021

Table 27: Programs contributing data for Water Temperature

- 95 Harmful Algal Bloom Marine Observation Network⁷
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX³
- 354- Rookery Bay National Estuarine Research Reserve System-Wide Monitoring $\rm Program^1$
- 509 SERC Water Quality Monitoring $\rm Network^5$
- 4043 RBNERR Fish Assessment^8
- 5002 Florida STORET / $\rm WIN^2$

Water Quality - Continuous

The following files were used in the continuous analysis:

- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_SW-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_Saturation_SW-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_pH_SW-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Salinity_SW-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Turbidity_SW-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Water_Temperature_SW-2024-Dec-08.txt

Continuous monitoring locations in Cape Romano-Ten Thousand Islands Aquatic Preserve

Table 28: Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program (354)

ProgramLocationID	Years of Data	Use in Analysis	Parameters
rkbfbwq rkbfuwq rkbmbwq	23 23 25	TRUE TRUE TRUE	DO , DOS , pH , Sal , Turb , TempW DO , DOS , pH , Sal , Turb , TempW DO , DOS , pH , Sal , Turb , TempW
rkbpbwq	9	TRUE	$\rm DO$, $\rm DOS$, $\rm pH$, $\rm Sal$, $\rm Turb$, $\rm TempW$

Table 29: National Water Information System (7)

Program Location ID	Years of Data	Use in Analysis	Parameters
255123081321300	11	TRUE	Sal , TempW
255138081321701	8	TRUE	Sal , TempW
255432081303900	19	TRUE	Sal , TempW
255443081314700	5	FALSE	Sal , TempW
255532081314300	3	FALSE	Sal , TempW
255534081324000	18	TRUE	Sal , TempW
255654081350200	18	TRUE	Sal , TempW
255732081363700	5	TRUE	Sal , TempW

Figure 23: Map showing Continuous Water Quality Monitoring sampling locations within the boundaries of Cape Romano-Ten Thousand Islands Aquatic Preserve. Sites marked as *Use In Analysis* are featured in this report.

Dissolved Oxygen - All Stations Combined

Figure 24: Figure for Dissolved Oxygen - Continuous - All stations combined

Table 30:	Seasonal	Kendall-Tau	Results for	All	Stations	- Disso	olved
Oxygen							

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
rkbfbwq	559530	21	2002 - 2024	5.4	-0.08	5.28	-0.01	0.1032
rkbfuwq	594676	20	2002 - 2024	5.0	-0.33	5.29	-0.03	0.0000
$\mathbf{rkbmbwq}$	613238	22	2000 - 2024	4.4	-0.26	4.89	-0.02	0.0000
rkbpbwq	289726	9	2016 - 2024	4.9	-0.18	5.21	-0.03	0.0246

Dissolved Oxygen Saturation - All Stations Combined

Figure 25: Figure for Dissolved Oxygen Saturation - Continuous - All stations combined

Table 31:	Seasonal	Kendall-Tau	Results	for	All	Stations	-	Dissolved	1
Oxygen S	Saturation	L							

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
rkbfbwq	563836	21	2002 - 2024	78.3	-0.04	79.01	-0.06	0.4097
rkbfuwq	594935	20	2002 - 2024	72.2	-0.26	77.53	-0.25	0.0000
$\mathbf{rkbmbwq}$	619562	22	2000 - 2024	65.1	-0.23	73.35	-0.29	0.0000
rkbpbwq	291357	9	2016 - 2024	72.3	-0.18	77.60	-0.36	0.0289

pH - All Stations Combined

Figure 26: Figure for pH - Continuous - All stations combined

Table 32:	Seasonal	Kendall-Tau	Results	for	All	Stations	- pH
	10 0 0 10 0					10 000000000000	r

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
rkbfbwq	626300	23	2002 - 2024	7.8	0.04	7.83	0.00	0.3005
rkbfuwq	649975	23	2002 - 2024	7.7	-0.01	7.72	0.00	0.8449
rkbmbwq	683502	25	2000 - 2024	7.7	-0.09	7.70	0.00	0.0346
rkbpbwq	283219	9	2016 - 2024	7.8	0.20	7.77	0.01	0.0176

Salinity - All Stations Combined by Program

Figure 27: Figure for Salinity - Continuous - Program 7

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
255123081321300	1809	8	2007 - 2017	32	-0.23	35.11	-0.44	0.0182
255432081303900	5961	18	2006 - 2024	21	-0.2	28.77	-0.26	0.0001
255534081324000	5677	17	2007 - 2024	32	-0.14	35.22	-0.16	0.0083
255654081350200	5674	17	2007 - 2024	32	-0.09	34.04	-0.09	0.0955
255732081363700	1434	5	2011 - 2015	34	0.25	32.15	0.52	0.0955
255443081314700	1465	4	2007 - 2011	32	-	-	-	-
255532081314300	902	3	2009 - 2011	31	-	-	-	-
255138081321701	2482	8	2017 - 2024	31	-0.05	30.89	-0.11	0.5671

Salinity - All Stations Combined by Program

Figure 28: Figure for Salinity - Continuous - Program 354

Table 34: Seasonal Kendall-Tau Results for All Stations - Salinity

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
rkbfbwq	658798	23	2002 - 2024	29.6	-0.03	31.64	-0.03	0.4691
rkbfuwq	675230	23	2002 - 2024	26.0	-0.07	28.65	-0.07	0.1290
rkbmbwq	694825	25	2000 - 2024	33.3	-0.12	34.97	-0.08	0.0032
rkbpbwq	290041	9	2016 - 2024	30.2	-0.01	30.60	-0.04	0.9243

Turbidity - All Stations Combined

Figure 29: Figure for Turbidity - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
rkbfbwq	638544	23	2002 - 2024	7	-0.39	11.61	-0.25	0.0000
rkbfuwq	615945	23	2002 - 2024	6	-0.20	8.54	-0.09	0.0000
rkbmbwq	670439	25	2000 - 2024	9	-0.22	12.74	-0.13	0.0000
rkbpbwq	286433	9	2016 - 2024	10	-0.37	13.71	-0.51	0.0000

Table 35: Seasonal Kendall-Tau Results for All Stations - Turbidity

Water Temperature - All Stations Combined by Program

Figure 30: Figure for Water Temperature - Continuous - Program 7

Table 36:	Seasonal	Kendall-Tau	Results	for	All	Stations	-	Water
Temperat	ure							

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
255123081321300	1818	8	2007 - 2017	27.3	0.1	26.46	0.03	0.3843
255432081303900	6019	18	2006 - 2024	27.1	0.17	26.13	0.05	0.0011
255534081324000	5733	17	2007 - 2024	26.7	0.14	25.59	0.04	0.0088
255532081314300	906	3	2009 - 2011	29.3	-	-	-	-
255654081350200	5712	17	2007 - 2024	26.9	0.15	26.23	0.05	0.0054
255443081314700	2011	4	2007 - 2011	29.3	-	-	-	-
255732081363700	1435	5	2011 - 2015	28.4	0.24	27.3	0.23	0.1149
255138081321701	2498	8	2017 - 2024	27.3	0.12	26.85	0.07	0.1723

Water Temperature - All Stations Combined by Program

Figure 31: Figure for Water Temperature - Continuous - Program 354

Table 37:	Seasonal	Kendall-Tau	Results	for	All	Stations	-	Water
Temperat	ure							

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
rkbfbwq	674632	23	2002 - 2024	27.1	0.24	26.15	0.05	0.0000
rkbfuwq	685661	23	2002 - 2024	27.0	0.27	26.06	0.07	0.0000
rkbmbwq	718152	25	2000 - 2024	26.9	0.26	25.95	0.05	0.0000
rkbpbwq	292925	9	2016 - 2024	27.6	0.14	27.03	0.06	0.0711

Nekton

Figure 32: Figure for Nekton Species Richness in Cape Romano-Ten Thousand Islands Aquatic Preserve

Table 38: Nekton Species Richness

Gear Type	Sample Count	Number of Years	Period of Record	Median N of Taxa	Mean N of Taxa
Trawl (6.1)	2555	20	1999 - 2020	1.35	1.31

References

- 1. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Rookery Bay National Estuarine Research Reserve. Rookery Bay National Estuarine Research Reserve System-Wide Monitoring Program. (2024).
- 2. Florida Department of Environmental Protection (DEP). Florida STORET / WIN. (2024).
- 3. U.S. Environmental Protection Agency (EPA). EPA STOrage and RETrieval Data Warehouse (STORET)/WQX. (2023).
- 4. U.S. Environmental Protection Agency (EPA); Office of Water; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); National Estuary Program (NEP); coastal states. National Aquatic Resource Surveys, National Coastal Condition Assessment. (2021).
- 5. Florida International University (FIU); Southeastern Environmental Research Program. SERC Water Quality Monitoring Network. (2008).
- 6. University of Florida (UF); Institute of Food and Agricultural Sciences. Florida LAKEWATCH Program. (2024).
- 7. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). Harmful Algal Bloom Marine Observation Network. (2018).
- 8. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Rookery Bay National Estuarine Research Reserve. RBNERR Fish Assessment. (2023).