Biscayne Bay Aquatic Preserve SEACAR Habitat Analyses

Last compiled on 08 January, 2025

Contents	
Funding & Acknowledgements	2
Threshold Filtering	2
Value Qualifiers	3
Water Column	5
Seasonal Kendall-Tau Analysis	5
Water Quality - Discrete Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality Dissolved Oxygen - Discrete Water Quality Dissolved Oxygen Saturation - Discrete Water Quality pH - Discrete Water Quality Salinity - Discrete Water Quality Secchi Depth - Discrete Water Quality Total Nitrogen - Discrete Water Quality Total Suspended Solids - Discrete Water Quality Turbidity - Discrete Water Quality Water Temperature - Discrete Water Quality	7 10 12 13 16 18 19 23 25 26
Water Quality - Continuous Dissolved Oxygen - All Stations Combined Dissolved Oxygen Saturation - All Stations Combined pH - All Stations Combined Salinity - All Stations Combined Turbidity - All Stations Combined Water Temperature - All Stations Combined Submerged Aquatic Vegetation Parameters	35 36 37 38 39 40
Species	
Coral Reef	47
References	48

Funding & Acknowledgements

The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.

With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.

Published: 2025-01-08

Threshold Filtering

Threshold filters, following the guidance of Florida Department of Environmental Protection's (*FDEP*) Division of Environmental Assessment and Restoration (*DEAR*) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (*QAQC*) Flags are inserted into the *SEACAR_QAQCFlagCode* and *SEACAR_QAQC_Description* columns of the export data. The *Include* column indicates whether the *QAQC* Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the *Include* column to exclude data (1 to include, 0 to exclude).

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	$\mathrm{mg/L}$	-0.000001	50
Dissolved Oxygen Saturation	%	-0.000001	500
Salinity	ppt	-0.000001	70
Turbidity	NTU	-0.000001	4000
Water Temperature	Degrees C	-5.000000	45
pH	None	2.000000	14

Table 1: Continuous Water Quality threshold values

Table 2: 1	Discrete W	Vater Q	uality the	reshold v	alues

Parameter Name	Units	Low Threshold	High Threshold
Ammonia, Un-ionized (NH3)	mg/L	-	-
Ammonium, Filtered (NH4)	mg/L	-	-
Chlorophyll a, Corrected for Pheophytin	$\rm ug/L$	-	-
Chlorophyll a, Uncorrected for Pheophytin	$\mathrm{ug/L}$	-	-
Colored Dissolved Organic Matter	PCU	-	-

Parameter Name	Units	Low Threshold	High Threshold
Dissolved Oxygen	mg/L	-0.000001	25
Dissolved Oxygen Saturation	%	-0.000001	310
Fluorescent Dissolved Organic Matter	QSE	-	-
Light Extinction Coefficient	m^-1	-	-
NO2+3, Filtered	$\mathrm{mg/L}$	-	-
Nitrate (NO3)	$\mathrm{mg/L}$	-	-
Nitrite (NO2)	m mg/L	-	-
Nitrogen, organic	m mg/L	-	-
Phosphate, Filtered (PO4)	m mg/L	-	-
Salinity	ppt	-0.000001	70
Secchi Depth	m	0.000001	50
Specific Conductivity	$\mathrm{mS/cm}$	0.005000	100
Total Kjeldahl Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Nitrogen	$\mathrm{mg/L}$	-	-
Total Phosphorus	$\mathrm{mg/L}$	-	-
Total Suspended Solids	$\mathrm{mg/L}$	-	-
Turbidity	NTU	-	-
Water Temperature	Degrees C	3.000000	40
рН	None	2.000000	13

Table 3: Quality Assurance Flags inserted based on threshold checks listed in Table 1 and 2

SEACAR QAQC Description	Include	$SEACAR \ QAQCFlagCode$
Exceeds maximum threshold	0	2Q
Below minimum threshold	0	4Q
Within threshold tolerance	1	6Q
No defined thresholds for this parameter	1	7Q

Value Qualifiers

Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the *Include* column to filter the results.

STORET and WIN value qualifier codes

Value qualifier codes from *STORET* and *WIN* data are examined with the database and used to populate the *Include* column in data exports.

Qualifier Source	Value Qualifier	Include	MDL	Description
STORET-WIN	Н	0	0	Value based on field kit determination; results may not be accurate
STORET-WIN	J	0	0	Estimated value
STORET-WIN	V	0	0	Analyte was detected at or above method detection limit
STORET-WIN	Y	0	0	Lab analysis from an improperly preserved sample; data may be inaccurate

Table 4: Value Qualifier codes excluded from analysis

Discrete Water Quality Value Qualifiers

The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for **Program 476** - *Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network* and data flagged with Value Qualifier **H** are included for this program only.

 \mathbf{H} - Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.

 ${\bf I}$ - The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.

 \mathbf{Q} - Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.

 ${f S}$ - Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.

U - Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported

Systemwide Monitoring Program (SWMP) value qualifier codes

Value qualifier codes from the *SWMP* continuous program are examined with the database and used to populate the *Include* column in data exports. *SWMP* Qualifier Codes are indicated by *QualifierSource=SWMP*.

Qualifier Source	Value Qualifier	Include	Description
SWMP	-1	Yes	Optional parameter not collected
SWMP	-2	No	Missing data
SWMP	-3	No	Data rejected due to QA/QC
SWMP	-4	No	Outside low sensor range
SWMP	-5	No	Outside high sensor range
SWMP	0	Yes	Passed initial QA/QC checks
SWMP	1	No	Suspect data
SWMP	2	Yes	Reserved for future use
SWMP	3	Yes	Calculated data: non-vented depth/level sensor correction for changes in barometric pressure
SWMP	4	Yes	Historical: Pre-auto QA/QC
SWMP	5	Yes	Corrected data

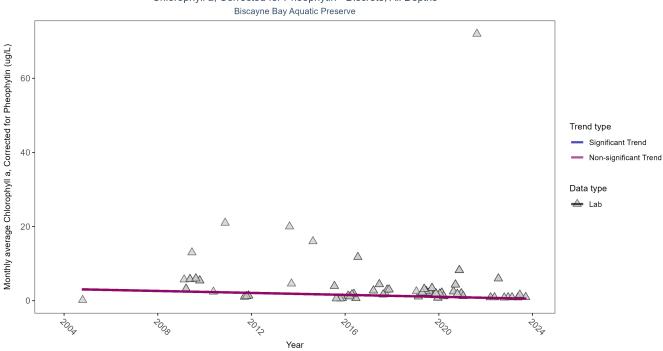
Table	$5 \cdot$	SWMP	Value	Qualifier	codes
rabic	υ.	D VV IVII	varue	Quanner	coucs

Water Column

The water column habitat extends from the water's surface to the bottom sediments, and it's where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.

SEACAR evaluates water column health with several essential parameters. These include nutrient surveys of nitrogen and phosphorus, andwater quality assessments of salinity, dissolved oxygen, pH, and water temperature. Water clarity is evaluated with Secchi depth, turbidity, levels of chlorophyll a, total suspended solids, and colored dissolved organic matter. Additionally, the richness of nekton is indicated by the abundance of free-swimming fishes and macroinvertebrates like crabs and shrimps.

Seasonal Kendall-Tau Analysis


Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as "insufficient data to conduct analysis". Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as $Use_In_Analysis = TRUE$. Any that fail either test will be excluded from the analyses and labeled as $Use_In_Analysis = FALSE$. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as "Significant Trend" (when p < 0.05), or "Non-significant Trend" (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.

Water Quality - Discrete

The following files were used in the discrete analysis:

- $\bullet \ \ Combined_WQ_WC_NUT_Chlorophyll_a_corrected_for_pheophytin-2024-Dec-08.txt\\$
- Combined_WQ_WC_NUT_Chlorophyll_a_uncorrected_for_pheophytin-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Dissolved_Oxygen_Saturation-2024-Dec-08.txt
- Combined_WQ_WC_NUT_pH-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Salinity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Secchi_Depth-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Nitrogen-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Phosphorus-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Turbidity-2024-Dec-08.txt
- Combined_WQ_WC_NUT_Water_Temperature-2024-Dec-08.txt

Chlorophyll a, Corrected for Pheophytin - Discrete Water Quality Seasonal Kendall-Tau Trend Analysis

Chlorophyll a, Corrected for Pheophytin - Discrete, All Depths

Figure 1: Seasonal Kendall-Tau Results for Chlorophyll a, Corrected for Pheophytin - Discrete

Table 6: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Corrected for Pheophytin

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	470	14	1.4	TRUE	-0.1845	0.1713	-0.1318	3.148	10.9176	0.4502	0

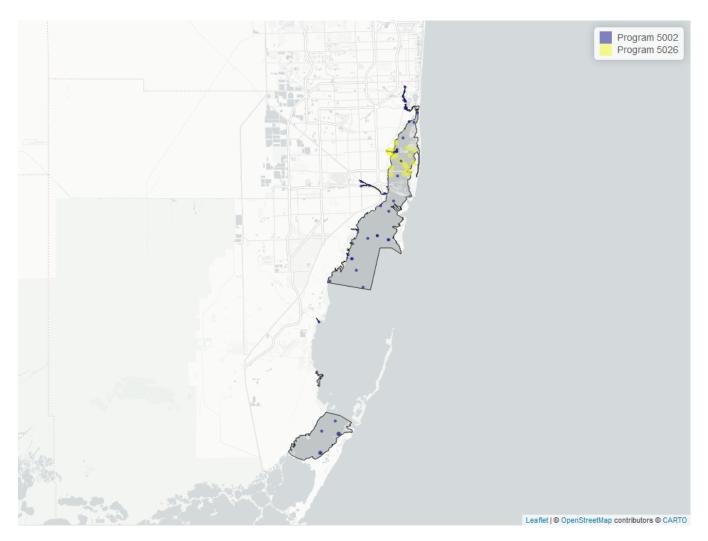


Figure 2: Map showing location of Discrete sampling sites for Chlorophyll a, Corrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
5026	287	2019	2021
5002	184	2004	2023

 Table 7: Programs contributing data for Chlorophyll a, Corrected for Pheophytin

Program names:

5002- Florida STORET / WIN^15026- North Biscayne Bay Seagrass Loss Water Quality ${\rm Program}^2$

Chlorophyll a, Uncorrected for Pheophytin - Discrete Water Quality

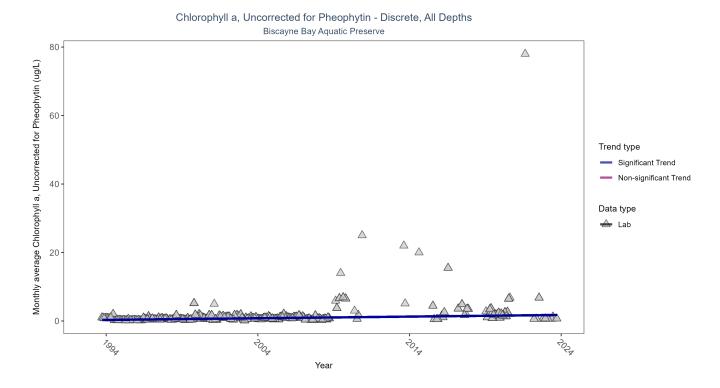


Figure 3: Seasonal Kendall-Tau Results for Chlorophyll a, Uncorrected for Pheophytin - Discrete

Table 8: Seasonal Kendall-Tau Trend Analysis for Chlorophyll a, Uncorrected for Pheophytin

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	2254	28	0.6666	TRUE	0.3904	0	0.0484	0.2649	6.8459	0.8114	1

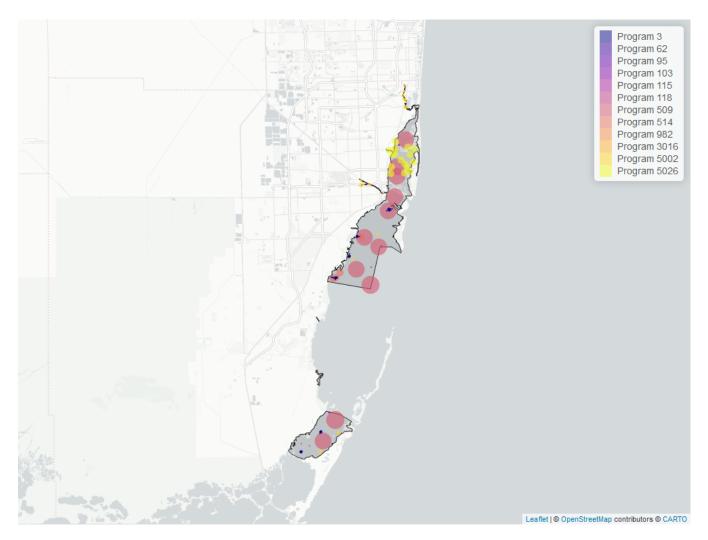


Figure 4: Map showing location of Discrete sampling sites for Chlorophyll a, Uncorrected for Pheophytin. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
509	1636	1993	2008
5026	410	2019	2020
3	384	2002	2012
5002	103	2001	2023
514	92	2000	2005
103	7	2002	2006
118	6	2006	2010
115	1	2004	2004

 Table 9: Programs contributing data for Chlorophyll a, Uncorrected for Pheophytin

Program names:

 β - Atlantic Oceanographic and Meteorological Laboratory (AOML) South Florida Program Synoptic Shipboard Surveys^3

103 - EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴

115 - Environmental Monitoring Assessment ${\rm Program}^5$

- 118 National Aquatic Resource Surveys, National Coastal Condition $\operatorname{Assessment}^6$
- 509 SERC Water Quality Monitoring Network 7
- 514 Florida LAKEWATCH Program⁸
- 5002 Florida STORET / WIN^1
- 5026 North Biscayne Bay Seagrass Loss Water Quality $\rm Program^2$

Dissolved Oxygen - Discrete Water Quality

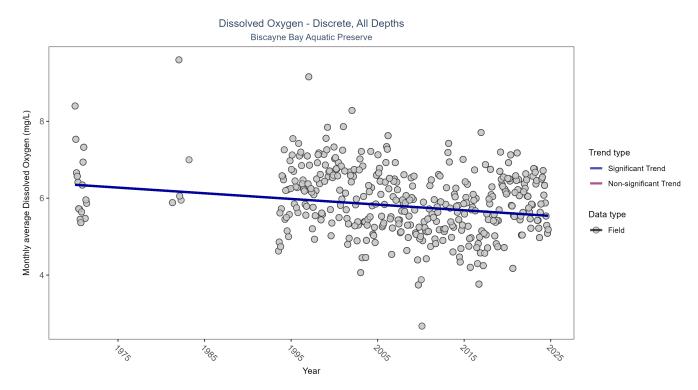


Figure 5: Seasonal Kendall-Tau Results for Dissolved Oxygen - Discrete

Table 10: Seasonal	Kendall-Tau	Trend Ar	alvsis for	Dissolved	Oxvgen

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	21842	37	6.01	TRUE	-0.2043	0	-0.0147	6.35	6.2301	0.8576	-1

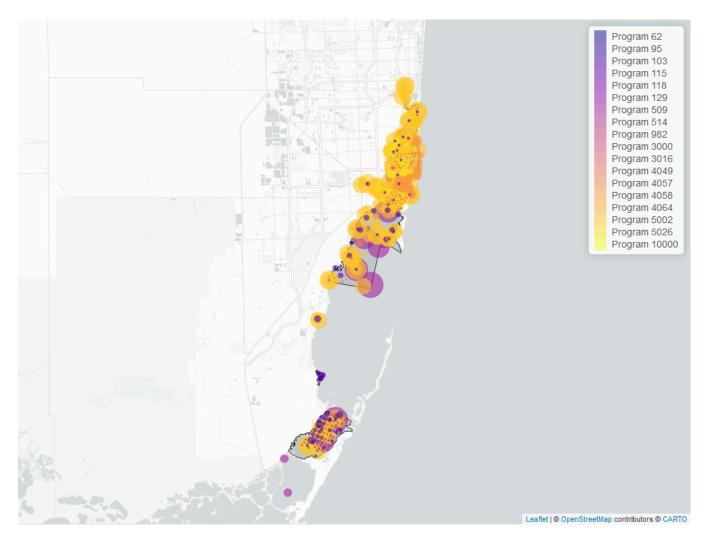


Figure 6: Map showing location of Discrete sampling sites for Dissolved Oxygen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
5002	13987	2001	2024
509	3316	1993	2008
4058	2269	2016	2023
5026	1442	2019	2024
103	775	1970	2020
4049	192	2006	2008
4057	166	2015	2019
118	28	2006	2020
115	3	2004	2004

Table 11: Programs contributing data for Dissolved Oxygen

Program names:

- EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^4
- Environmental Monitoring Assessment $\rm Program^5$
- National Aquatic Resource Surveys, National Coastal Condition $\operatorname{Assessment}^6$
- SERC Water Quality Monitoring $\rm Network^7$

- The South Florida Fisheries Habitat Assessment Program $({\rm FHAP})^9$
- Biscayne Bay Water Watch¹⁰
- City of Miami Beach Water Monitoring 11
- Florida STORET / WIN^1
- North Biscayne Bay Seagrass Loss Water Quality $\rm Program^2$

Dissolved Oxygen Saturation - Discrete Water Quality

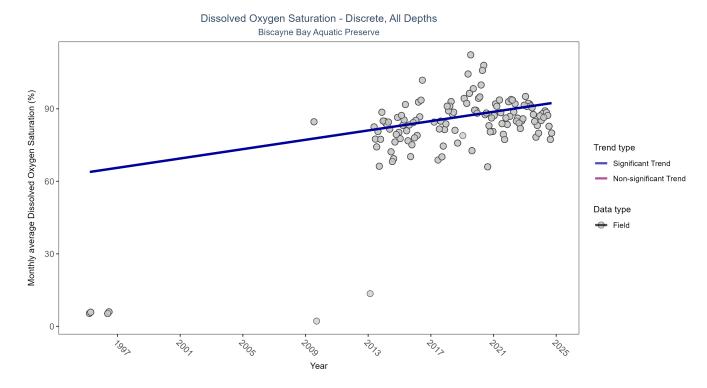


Figure 7: Seasonal Kendall-Tau Results for Dissolved Oxygen Saturation - Discrete

Table 12: Seasonal	Kendall-Tau	Trend Analysi	s for Dissolved	Oxygen Saturation

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	9941	15	90.3	TRUE	0.3164	0	0.9663	63.6506	12.2313	0.3465	1

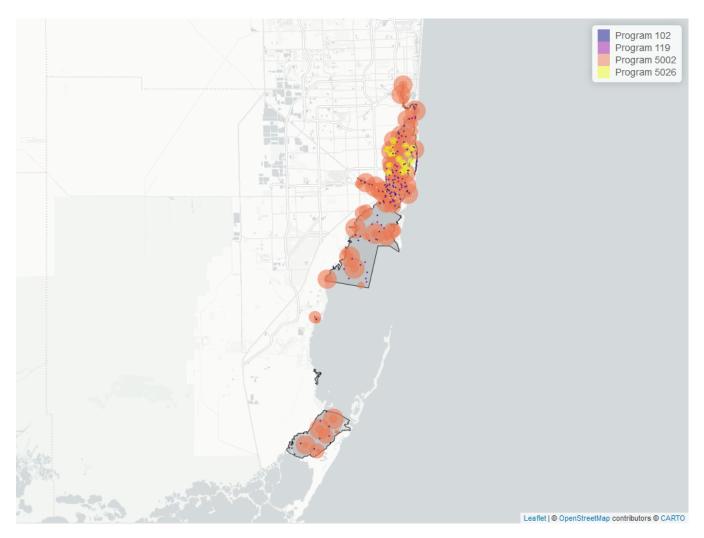


Figure 8: Map showing location of Discrete sampling sites for Dissolved Oxygen Saturation. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	9231	2009	2024
5026	491	2019	2023
102	259	1995	1996

Table 13: Programs contributing data for Dissolved Oxygen Saturation

Program names:

102- National Status and Trends Mussel Watch
 12 5002- Florida STORET / WIN^1
 5026- North Biscayne Bay Seagrass Loss Water Quality Program
²

pH - Discrete Water Quality

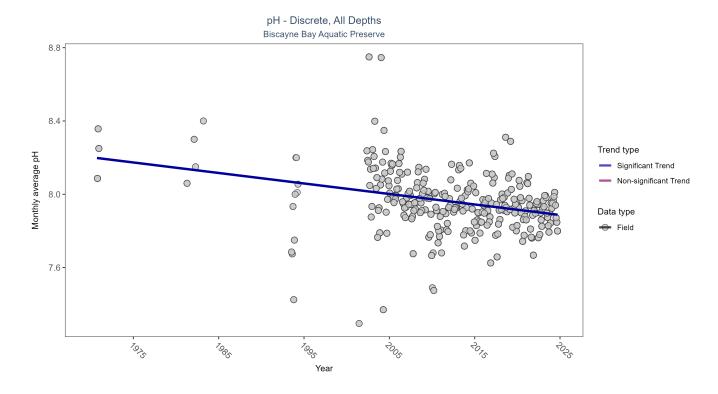


Figure 9: Seasonal Kendall-Tau Results for pH - Discrete

Table 14: Seasonal Kendall-Tau	Trend Analysis for pH
--------------------------------	-----------------------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	18131	30	7.96	TRUE	-0.2897	0	-0.0057	8.2023	6.516	0.8368	-1

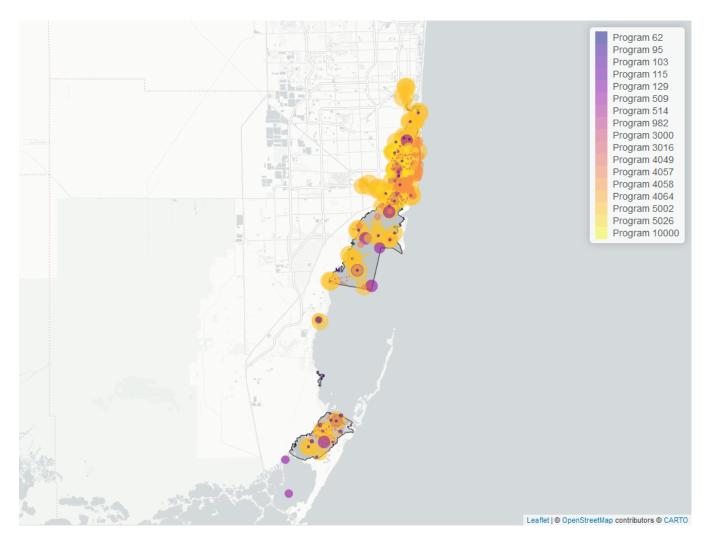


Figure 10: Map showing location of Discrete sampling sites for pH. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	13061	2001	2024
4058	2312	2016	2023
5026	1528	2019	2024
509	822	2002	2008
4049	247	2005	2008
4057	169	2015	2019
103	166	1970	2020
115	3	2004	2004

	Table 15:	Programs	contributing	data	for	pН
--	-----------	----------	--------------	------	-----	----

Program names:

- Environmental Monitoring Assessment ${\rm Program}^5$
- SERC Water Quality Monitoring $\rm Network^7$
- The South Florida Fisheries Habitat Assessment Program $({\rm FHAP})^9$
- Biscayne Bay Water Watch 10

4058- City of Miami Beach Water Monitoring^{11}
5002 - Florida STORET / WIN^1 5026 - North Biscayne Bay Seagrass Loss Water Quality Program^2

Salinity - Discrete Water Quality

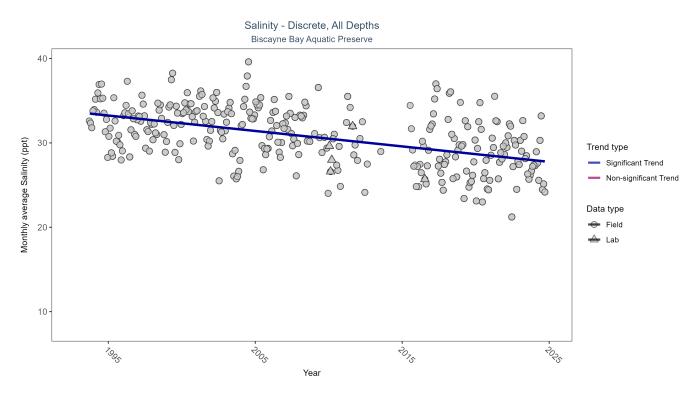


Figure 11: Seasonal Kendall-Tau Results for Salinity - Discrete

Table 16: Seasonal Kendall-Tau	Trend Analysis	for Salinity
--------------------------------	----------------	--------------

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	23942	32	32	TRUE	-0.4146	0	-0.183	33.6113	6.9745	0.8011	-1

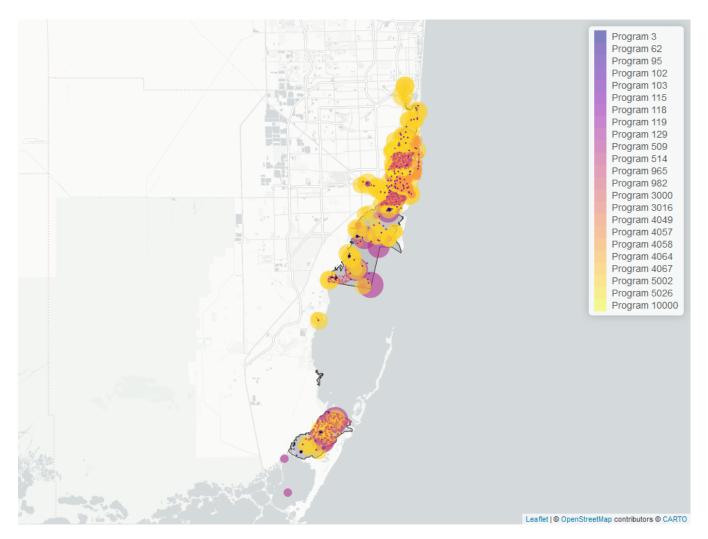


Figure 12: Map showing location of Discrete sampling sites for Salinity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
5002	14251	2003	2024
509	3316	1993	2008
965	2512	2005	2011
4058	2309	2016	2023
5026	436	2019	2024
3	391	2002	2012
4049	271	2005	2008
102	263	1995	1996
4057	171	2015	2019
118	29	2015	2020
95	7	2013	2013
103	3	2003	2003
115	3	2004	2004

Table 17: Programs contributing data for Salinity

Program names:

 β - Atlantic Oceanographic and Meteorological Laboratory (AOML) South Florida Program Synoptic Shipboard Surveys^3

- 95 Harmful Algal Bloom Marine Observation $\rm Network^{13}$
- 102 National Status and Trends Mussel Watch 12
- 103 EPA STOrage and RETrieval Data Warehouse (STORET)/WQX⁴
- 115 Environmental Monitoring Assessment ${\rm Program}^5$
- 118 National Aquatic Resource Surveys, National Coastal Condition Assessment⁶
- 509 SERC Water Quality Monitoring Network⁷
- 965 South Florida Seagrass Fish and Invertebrate Assessment $\rm Network^{14}$
- 4049 The South Florida Fisheries Habitat Assessment Program $({\rm FHAP})^9$
- 4057 Biscayne Bay Water Watch¹⁰
- 4058 City of Miami Beach Water Monitoring 11
- 5002 Florida STORET / WIN^1
- 5026 North Biscayne Bay Seagrass Loss Water Quality Program²

Secchi Depth - Discrete Water Quality

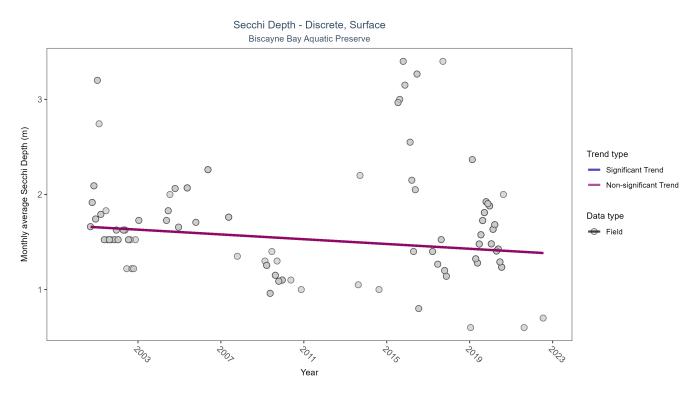


Figure 13: Seasonal Kendall-Tau Results for Secchi Depth - Discrete

Table 18:	Seasonal	Kendall-Tau	Trend	Analysis	for	Secchi	Depth

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
Surface	686	19	1.524	TRUE	-0.1156	0.3365	-0.0126	1.6676	4.614	0.9484	0

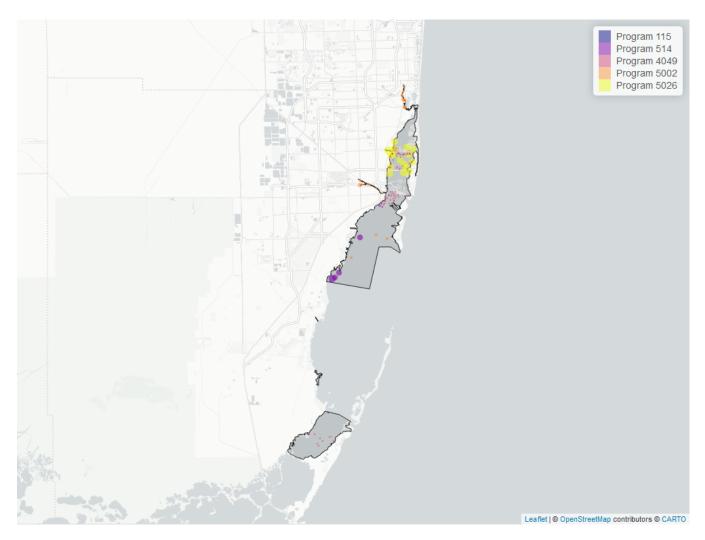


Figure 14: Map showing location of Discrete sampling sites for Secchi Depth. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5026	426	2019	2020
5002	101	2007	2022
514	86	2000	2005
4049	73	2005	2007
115	1	2004	2004

Table 19: Programs contributing data for Secchi Depth

Program names:

- 115 Environmental Monitoring Assessment $\rm Program^5$
- 514 Florida LAKEWATCH $\rm Program^8$
- 4049 The South Florida Fisheries Habitat Assessment Program $({\rm FHAP})^9$
- 5002 Florida STORET / WIN^1
- 5026 North Biscayne Bay Seagrass Loss Water Quality $\rm Program^2$

Total Nitrogen - Discrete Water Quality

Total Nitrogen Calculation:

The logic for calculated Total Nitrogen was provided by Kevin O'Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.

- 1) TN = TKN + NO3O2;
- 2) TN = TKN + NO3 + NO2;
- 3) TN = ORGN + NH4 + NO3O2;
- 4) TN = ORGN + NH4 + NO2 + NO3;
- 5) TN = TKN + NO3;
- 6) TN = ORGN + NH4 + NO3;

Additional Information:

- Rules for use of sample fraction:
 - Florida Department of Environmental Protection (FDEP) report that if both "Total" and "Dissolved" components are reported, only "Total" is used. If the total is not reported, then the dissolved components are used as a best available replacement.
 - Total nitrogen calculations are done using nitrogen components with the same sample fraction, nitrogen components with mixed total/dissolved sample fractions are not used. In other words, total nitrogen can be calculated when TKN and NO3O2 are both total sample fractions, or when both are dissolved sample fractions. Future calculations of total nitrogen values may be based on components with mixed sample fractions.
- Values inserted into data:
 - ParameterName = "Total Nitrogen"
 - SEACAR_QAQCFlagCode = "1Q"
 - SEACAR_QAQC_Description = "SEACAR Calculated"

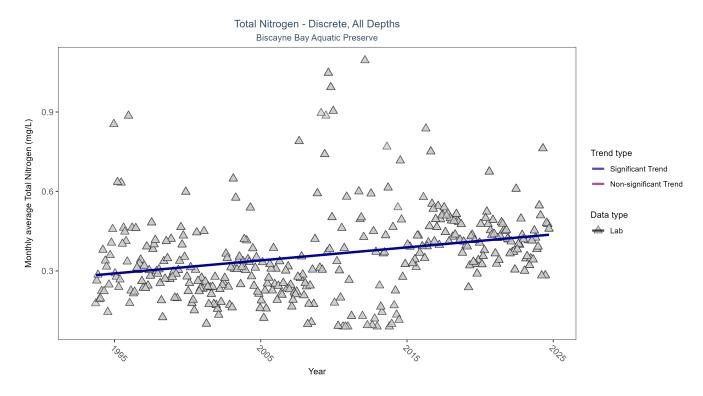


Figure 15: Seasonal Kendall-Tau Results for Total Nitrogen - Discrete

Table 20: Seasonal Kendall-Tau Trend Analysis for Total Nitrogen

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	7878	32	0.334	TRUE	0.2323	0	0.0049	0.2808	10.77	0.4627	1

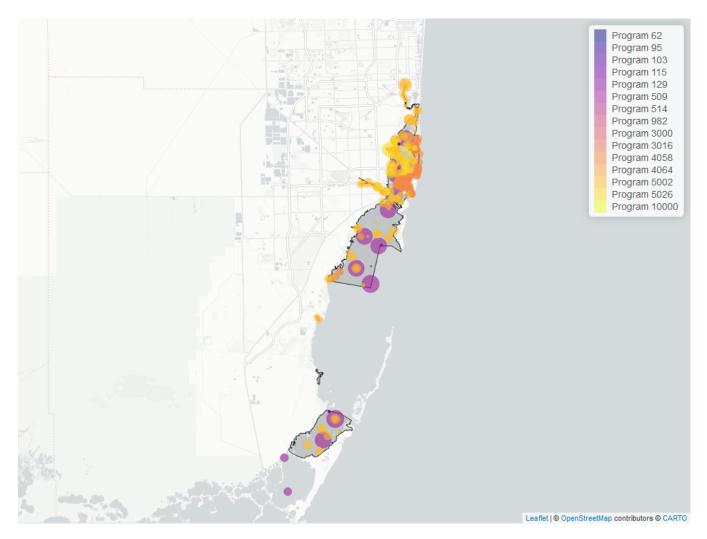


Figure 16: Map showing location of Discrete sampling sites for Total Nitrogen. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	2613	1994	2024
4058	2125	2016	2023
509	1654	1993	2008
5026	1417	2019	2024
514	104	2000	2005
103	20	2002	2006
115	1	2004	2004

Table 21: Programs contributing data for Total Nitrogen

Program names:

- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX $\!\!\!^4$
- 115 Environmental Monitoring Assessment ${\rm Program}^5$
- 509 SERC Water Quality Monitoring $\rm Network^7$
- $514\,$ Florida LAKEWATCH $\rm Program^8$
- 4058 City of Miami Beach Water Monitoring 11

Total Phosphorus - Discrete Water Quality

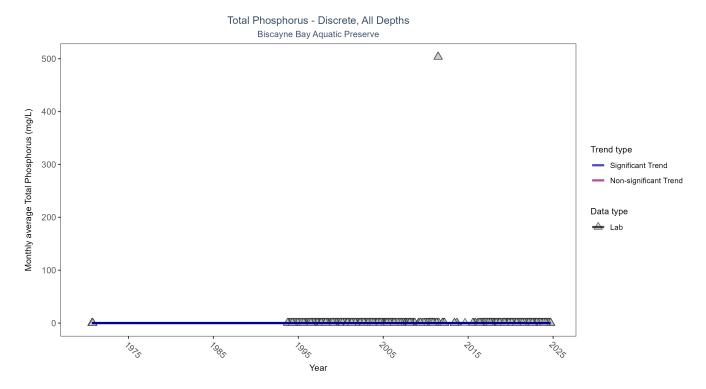


Figure 17: Seasonal Kendall-Tau Results for Total Phosphorus - Discrete

Table 22: Seasonal Kendall-Tau Trend Analysis for Total Phosphorus

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	7984	33	0.0091	TRUE	0.3644	0	0.0003	-0.0019	1.6149	0.9995	1

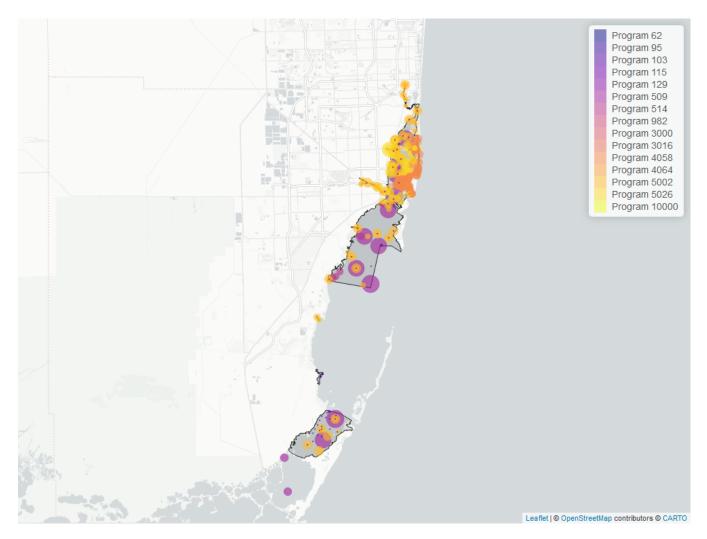


Figure 18: Map showing location of Discrete sampling sites for Total Phosphorus. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear M in	YearMax
5002	2600	2001	2024
4058	2196	2016	2023
509	1655	1993	2008
5026	1462	2019	2024
514	103	2000	2005
103	75	1970	2020
115	1	2004	2004

Table 23: Programs contributing data for Total Phosphorus

Program names:

- 103 EPA STO rage and RETrieval Data Warehouse (STORET)/WQX $\!\!\!^4$
- 115 Environmental Monitoring Assessment ${\rm Program}^5$
- 509 SERC Water Quality Monitoring $\rm Network^7$
- $514\,$ Florida LAKEWATCH $\rm Program^8$
- 4058 City of Miami Beach Water Monitoring 11

Total Suspended Solids - Discrete Water Quality

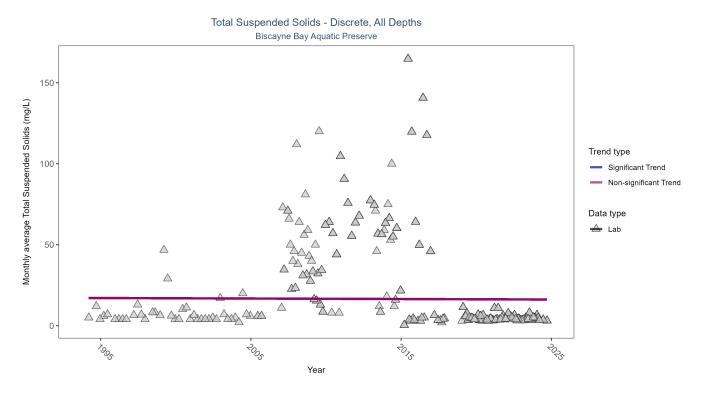


Figure 19: Seasonal Kendall-Tau Results for Total Suspended Solids - Discrete

Table 24: Seasonal Kendall-Tau Trend Analysis for Total Suspended Solids

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	2221	29	4.9	TRUE	-0.1596	0.2724	-0.0308	17.1354	15.1965	0.1737	0

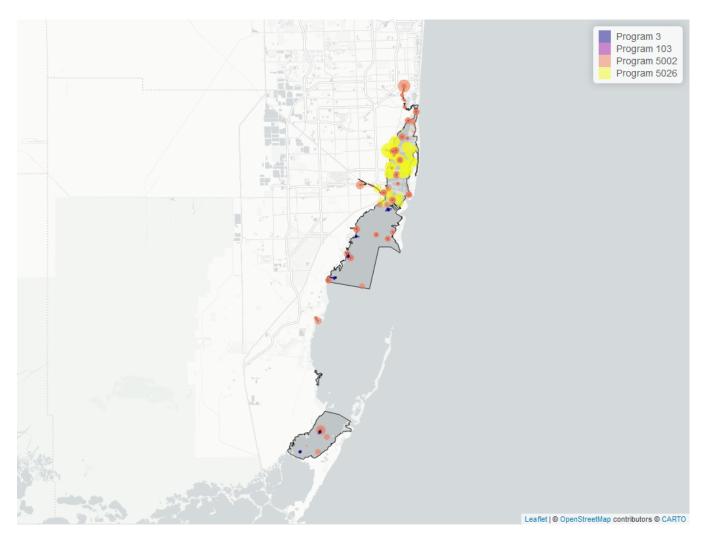


Figure 20: Map showing location of Discrete sampling sites for Total Suspended Solids. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	YearMax
5026	1917	2019	2024
5002	1193	1994	2024
3	369	2002	2012
103	19	2020	2020

Table 25: Programs contributing data for Total Suspended Solids

Program names:

 β - Atlantic Oceanographic and Meteorological Laboratory (AOML) South Florida Program Synoptic Shipboard Surveys^3

5002 - Florida STORET / WIN^1

5026 - North Biscayne Bay Seagrass Loss Water Quality $\rm Program^2$

Turbidity - Discrete Water Quality

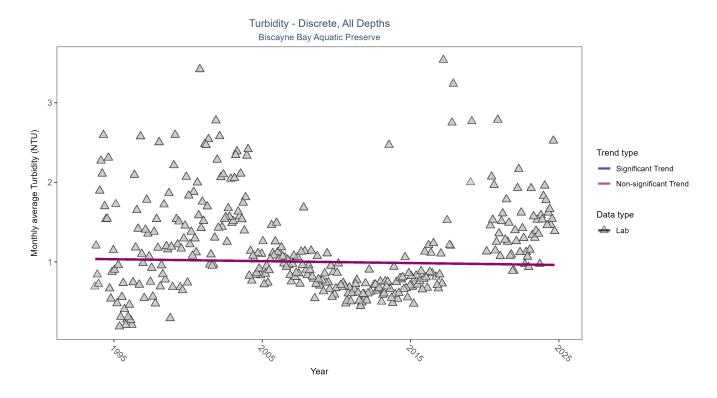


Figure 21: Seasonal Kendall-Tau Results for Turbidity - Discrete

Table 26: Seasonal Kendall-Tau Trend Analysis for Turbidity	у
---	---

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	${\it SennSlope}$	${\bf Senn Intercept}$	ChiSquared	pChiSquared	Trend
All	11884	31	0.8	TRUE	-0.027	0.4931	-0.0024	1.0383	4.2044	0.9636	0

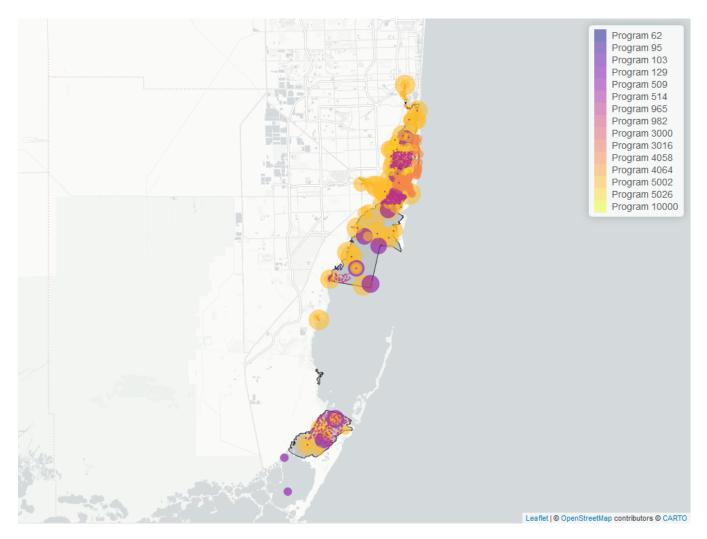


Figure 22: Map showing location of Discrete sampling sites for Turbidity. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	Y ear Min	Y ear Max
5002	11080	1994	2024
4058	2316	2016	2023
509	1658	1993	2008
965	1254	2005	2011
5026	410	2019	2020
103	32	1982	2020

Table 27: Programs contributing data for Turbidity

Program names:

- SERC Water Quality Monitoring $\rm Network^7$
- South Florida Seagrass Fish and Inverte
brate Assessment $\rm Network^{14}$
- City of Miami Beach Water Monitoring 11
- Florida STORET / WIN^1
- North Biscayne Bay Seagrass Loss Water Quality $\rm Program^2$

Water Temperature - Discrete Water Quality

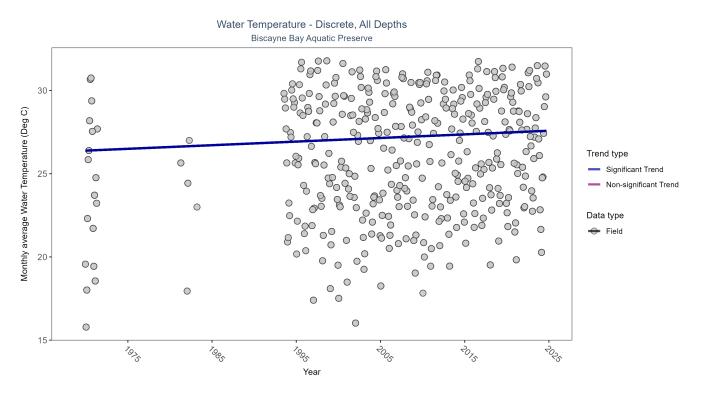


Figure 23: Seasonal Kendall-Tau Results for Water Temperature - Discrete

RelativeDepth	N-Data	N-Years	Median	Independent	tau	р	SennSlope	SennIntercept	ChiSquared	pChiSquared	Trend
All	25790	38	27	TRUE	0.1371	0.0001	0.0217	26.3665	10.0478	0.5261	1

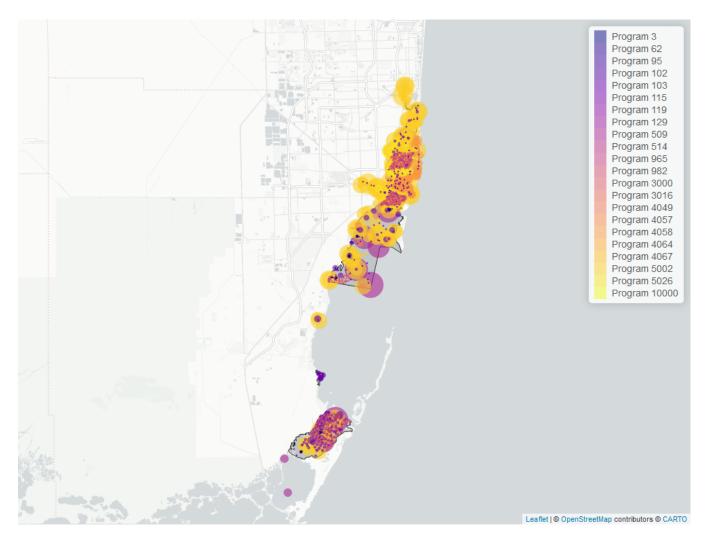


Figure 24: Map showing location of Discrete sampling sites for Water Temperature. The bubble size on the maps below reflect the amount of data available at each sampling site.

ProgramID	N_Data	YearMin	YearMax
5002	13945	2001	2024
509	3316	1993	2008
965	2512	2005	2011
4058	2299	2016	2023
5026	1535	2019	2024
103	1089	1969	2020
3	391	2002	2012
4049	271	2005	2008
102	263	1995	1996
4057	168	2015	2019
95	9	2012	2015
115	3	2004	2004

Table 29: Programs contributing data for Water Temperature

Program names:

 ${\mathcal 3}$ - Atlantic Oceanographic and Meteorological Laboratory (AOML) South Florida Program Synoptic Shipboard

 $Surveys^3$

- Harmful Algal Bloom Marine Observation $\rm Network^{13}$
- National Status and Trends Mussel Watch 12
- EPA STOrage and RETrieval Data Warehouse (STORET)/WQX^4
- Environmental Monitoring Assessment $\rm Program^5$
- SERC Water Quality Monitoring $\rm Network^7$
- South Florida Seagrass Fish and Inverte
brate Assessment $\rm Network^{14}$
- The South Florida Fisheries Habitat Assessment Program (FHAP)⁹
- Biscayne Bay Water Watch 10
- City of Miami Beach Water Monitoring^{11}
- Florida STORET / WIN^1
- North Biscayne Bay Seagrass Loss Water Quality $\rm Program^2$

Water Quality - Continuous

The following files were used in the continuous analysis:

- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_SE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_Saturation_SE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_pH_SE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Salinity_SE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Turbidity_SE-2024-Dec-08.txt
- Combined_WQ_WC_NUT_cont_Water_Temperature_SE-2024-Dec-08.txt

Continuous monitoring locations in Biscayne Bay Aquatic Preserve

Table 30: Biscayne Bay Aquatic Preserves Continuous Water Quality Monitoring (5077)

ProgramLocationID	Years of Data	Use in Analysis	Parameters
BBBB14	6	TRUE	DO , DOS , pH , Sal , Turb , TempW
BBCWA4	3	FALSE	DO , DOS , pH , Sal , Turb , TempW
BBJT71	6	TRUE	DO , DOS , pH , Sal , $Turb$, $TempW$
BBLR03	5	TRUE	DO, DOS
BBLR03	6	TRUE	pH , Sal , Turb , TempW
BBMRDW	4	FALSE	DO , DOS , pH , Sal , Turb , TempW
BBMRRB	3	FALSE	$\rm DO$, $\rm DOS$, $\rm pH$, $\rm Sal$, $\rm Turb$, $\rm TempW$

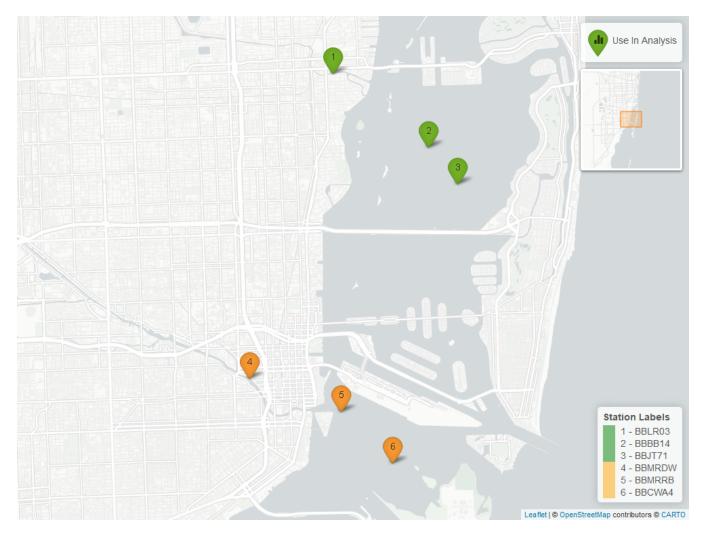


Figure 25: Map showing Continuous Water Quality Monitoring sampling locations within the boundaries of Biscayne Bay Aquatic Preserve. Sites marked as *Use In Analysis* are featured in this report.

Dissolved Oxygen - All Stations Combined

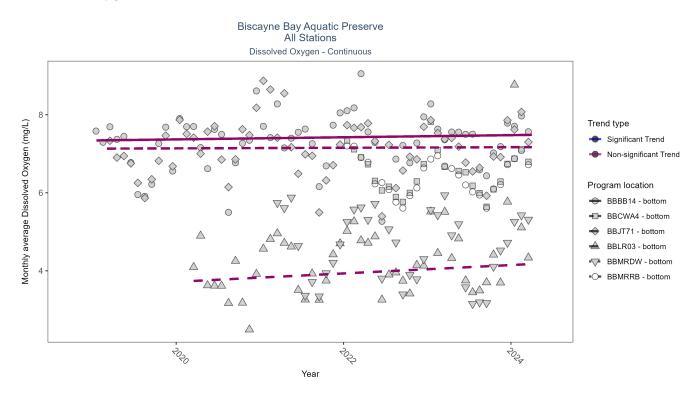


Figure 26: Figure for Dissolved Oxygen - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
BBCWA4	71466	3	2022 - 2024	6.5	-	-	-	-
BBBB14	158232	6	2019 - 2024	7.3	0.09	7.34	0.03	0.4258
BBJT71	175347	6	2019 - 2024	7.0	0.08	7.13	0.01	0.5824
BBLR03	130447	5	2020 - 2024	4.2	0.21	3.72	0.11	0.1564
BBMRDW	98760	4	2021 - 2024	4.6	-	-	-	-
BBMRRB	76975	3	2022 - 2024	6.4	-	-	-	-

Table 31: Seasonal Kendall-Tau Results for All Stations - Dissolved Oxygen

Dissolved Oxygen Saturation - All Stations Combined

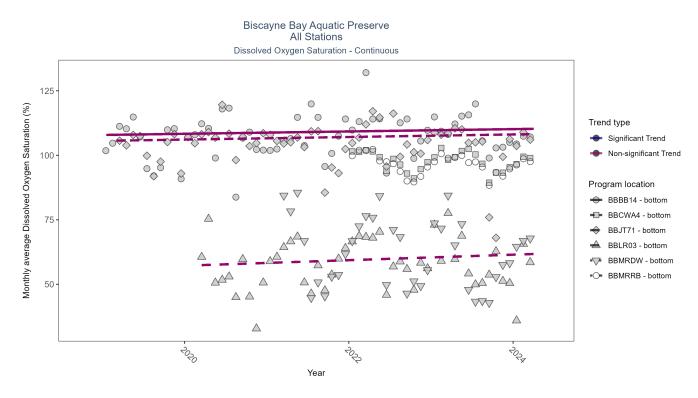


Figure 27: Figure for Dissolved Oxygen Saturation - Continuous - All stations combined

Table 32: Seasonal Kendall-Tau	Results for All Stations - Dissolved
Oxygen Saturation	

Station	N_Data	N_Years	Period of Record	Median	tau	${\bf Senn Intercept}$	SennSlope	р
BBCWA4	75189	3	2022 - 2024	97.5	-	-	-	_
BBBB14	157972	6	2019 - 2024	105.1	0.12	107.88	0.45	0.3528
BBLR03	130446	5	2020 - 2024	56.9	0.05	57.22	1.07	0.7768
BBJT71	176498	6	2019 - 2024	102.0	0.1	105.6	0.5	0.4095
BBMRRB	76983	3	2022 - 2024	95.8	-	-	-	-
BBMRDW	98761	4	2021 - 2024	60.6	-	-	-	-

pH - All Stations Combined

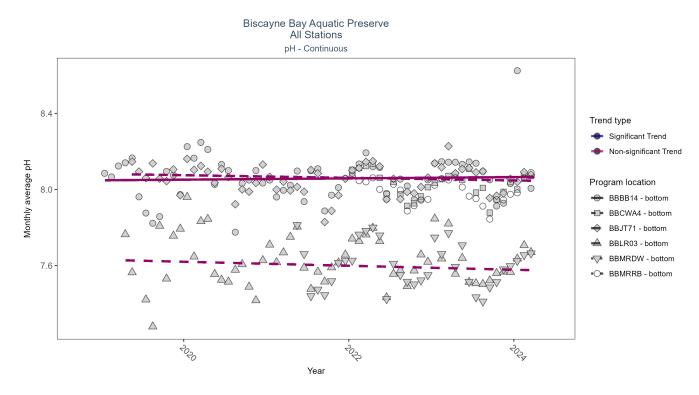


Figure 28: Figure for pH - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
BBCWA4	75371	3	2022 - 2024	8.0	-	-	-	-
BBBB14	154159	6	2019 - 2024	8.1	0.06	8.05	0	0.6905
BBJT71	163759	6	2019 - 2024	8.1	-0.15	8.08	-0.01	0.2199
BBLR03	145957	6	2019 - 2024	7.6	-0.16	7.63	-0.01	0.2199
BBMRDW	95215	4	2021 - 2024	7.6	-	-	-	-
BBMRRB	77027	3	2022 - 2024	8.0	-	-	-	-

Table 33: Seasonal Kendall-Tau Results for All Stations - pH

Salinity - All Stations Combined

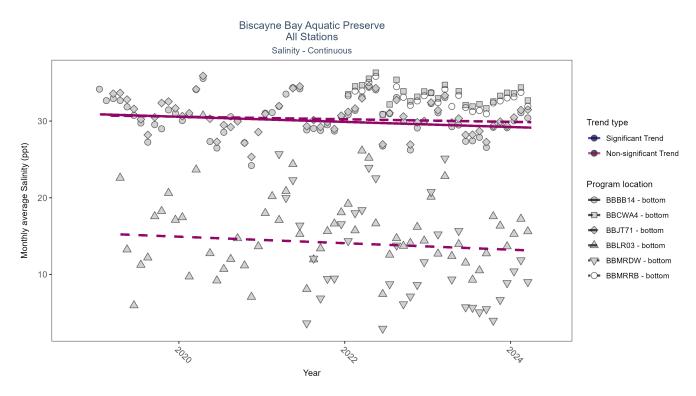


Figure 29: Figure for Salinity - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
BBBB14	147846	6	2019 - 2024	30.2	-0.21	30.9	-0.33	0.1049
BBCWA4	69581	3	2022 - 2024	33.6	-	-	-	-
BBLR03	150444	6	2019 - 2024	16.2	-0.15	15.35	-0.42	0.2293
BBJT71	161583	6	2019 - 2024	30.9	-0.12	30.75	-0.17	0.3169
BBMRDW	96889	4	2021 - 2024	10.1	-	-	-	-
BBMRRB	76983	3	2022 - 2024	33.1	-	-	-	-

Table 34: Seasonal Kendall-Tau Results for All Stations - Salinity

Turbidity - All Stations Combined

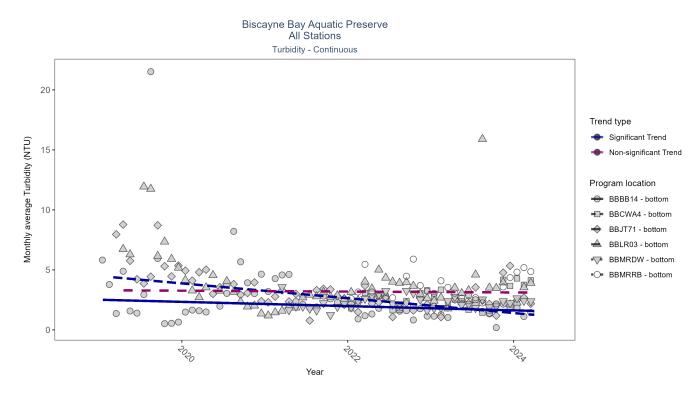


Figure 30: Figure for Turbidity - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
BBBB14	147344	6	2019 - 2024	2	-0.26	2.51	-0.18	0.0216
BBCWA4	72769	3	2022 - 2024	2	-	-	-	-
BBJT71	169453	6	2019 - 2024	3	-0.61	4.49	-0.62	0.0000
BBLR03	152908	6	2019 - 2024	3	-0.03	3.3	-0.04	0.8286
BBMRDW	98484	4	2021 - 2024	2	-	-	-	-
BBMRRB	76043	3	2022 - 2024	3	-	-	-	-

Table 35: Seasonal Kendall-Tau Results for All Stations - Turbidity

Water Temperature - All Stations Combined

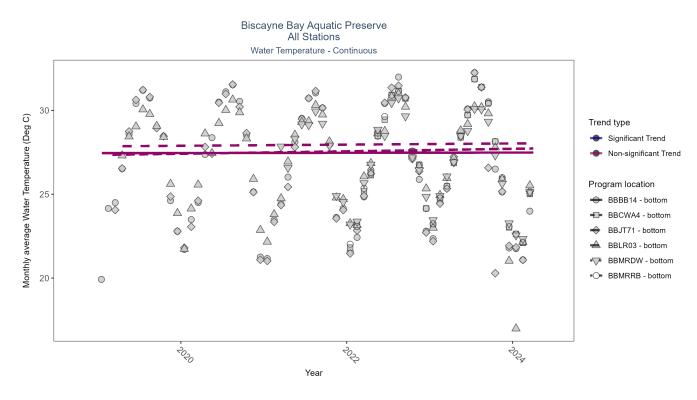


Figure 31: Figure for Water Temperature - Continuous - All stations combined

Station	N_Data	N_Years	Period of Record	Median	tau	SennIntercept	SennSlope	р
BBBB14	158344	6	2019 - 2024	26.9	0.04	27.45	0.01	0.7906
BBCWA4	75372	3	2022 - 2024	26.7	-	-	-	-
BBJT71	176850	6	2019 - 2024	27.1	0.06	27.34	0.07	0.5824
BBLR03	156713	6	2019 - 2024	27.7	0.02	27.86	0.03	0.9436
BBMRDW	98772	4	2021 - 2024	27.4	-	-	-	-
BBMRRB	77027	3	2022 - 2024	26.9	-	-	-	-

Table 36: Seasonal Kendall-Tau Results for All Stations - Water Temperature

Submerged Aquatic Vegetation

The data file used is: All_SAV_Parameters-2024-Dec-08.txt

Submerged aquatic vegetation (SAV) refers to plants and plant-like macroalgae species that live entirely underwater. The two primary categories of SAV inhabiting Florida estuaries are *benthic macroalgae* and *seagrasses*. They often grow together in dense beds or meadows that carpet the seafloor. *Macroalgae* include multicellular species of green, red and brown algae that often live attached to the substrate by a holdfast. They tend to grow quickly and can tolerate relatively high nutrient levels, making them a threat to seagrasses and other benthic habitats in areas with poor water quality. In contrast, *seagrasses* are grass-like, vascular, flowering plants that are attached to the seafloor by extensive root systems. *Seagrasses* occur throughout the coastal areas of Florida, including protected bays and lagoons as well as deeper offshore waters on the continental shelf. *Seagrasses* have taken advantage of the broad, shallow shelf and clear water to produce two of the most extensive seagrass beds anywhere in continental North America.

Parameters

Percent Cover measures the fraction of an area of seafloor that is covered by SAV, usually estimated by evaluating multiple small areas of seafloor. Percent cover is often estimated for total SAV, individual types of vegetation (seagrass, attached algae, drift algae) and individual species.

Frequency of Occurrence was calculated as the number of times a taxon was observed in a year divided by the number of sampling events, multiplied by 100. Analysis is conducted at the quadrat level and is inclusive of all quadrats (i.e., quadrats evaluated using Braun-Blanquet, modified Braun-Blanquet, and percent cover."

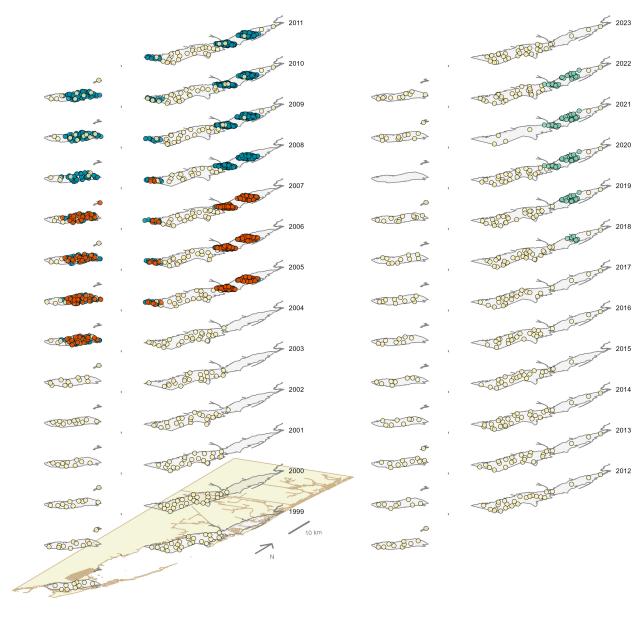
Species

Turtle grass (*Thalassia testudinum*) is the largest of the Florida seagrasses, with longer, thicker blades and deeper root structures than any of the other seagrasses. It is considered a climax seagrass species.

Shoal grass (*Halodule wrightii*) is an early colonizer of vegetated areas and usually grows in water too shallow for other species except *widgeon grass*. It can often tolerate larger salinity ranges than other seagrass species. *Shoal grass* is characterized by thin, flat blades, that are narrower than *turtle grass* blades.

Manatee grass (*Syringodium filiforme*) is easily recognizable because its leaves are thin and cylindrical instead of the flat, ribbon-like form shared by many other seagrass species. The leaves can grow up to half a meter in length. *Manatee grass* is usually found in mixed seagrass beds or small, dense monospecific patches.

Widgeon grass (*Ruppia maritima*) grows in both fresh and salt water and is widely distributed throughout Florida's estuaries in less saline areas, particularly in inlets along the east coast. This species resembles *shoal grass* in certain environments but can be identified by the pointed tips of its leaves.


Three species of *Halophila spp.* are found in Florida - **Star grass** (*Halophila engelmannii*), **Paddle grass** (*Halophila decipiens*), and **Johnson's seagrass** (*Halophila johnsonii*). These are smaller, more fragile seagrasses than other Florida species and are considered ephemeral. They grow along a single long rhizome, with short blades. These species are not well-studied, although surveys are underway to define their ecological roles.

Notes

Star grass, Paddle grass, and Johnson's seagrass will be grouped together and listed as **Halophila spp.** in the following managed areas. This is because several surveys did not specify to the species level:

- Banana River Aquatic Preserve
- Indian River-Malabar to Vero Beach Aquatic Preserve
- Indian River-Vero Beach to Ft. Pierce Aquatic Preserve
- Jensen Beach to Jupiter Inlet Aquatic Preserve
- Loxahatchee River-Lake Worth Creek Aquatic Preserve
- Mosquito Lagoon Aquatic Preserve

- Biscayne Bay Aquatic Preserve
- Florida Keys National Marine Sanctuary

Biscayne Bay Aquatic Preserve SAV Percent Cover - Sample Locations

Program name

- O Miami-Dade County DERM Benthic Habitat Monitoring Program
- South Florida Seagrass Fish and Invertebrate Assessment Network
 The South Florida Fisheries Habitat Assessment Program (FHAP)
- North Biscayne Bay Seagrass Loss Monitoring Program

Figure 32: Maps showing the temporal scope of SAV sampling sites within the boundaries of *Biscayne Bay Aquatic Preserve* by Program name.

Sampling locations by Program:

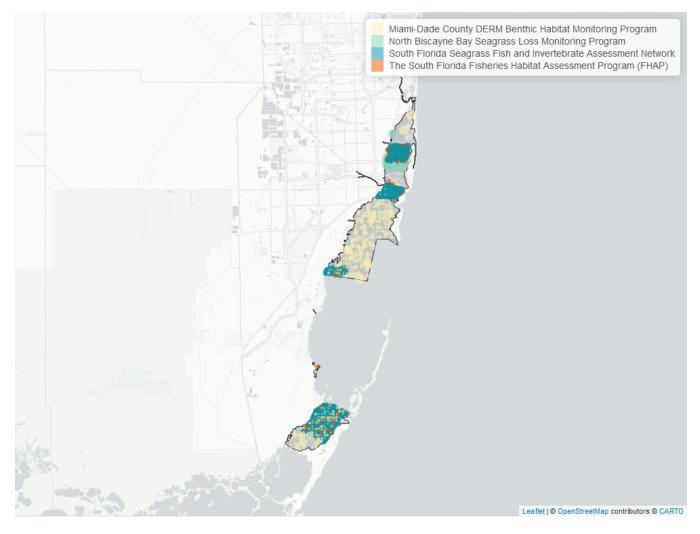


Figure 33: Map showing SAV sampling sites within the boundaries of *Biscayne Bay Aquatic Preserve*. The point size reflects the number of samples at a given sampling site.

Table 37: South Florida Seag	rass Fish and Invertebrate A	Assessment Network - Program 965
------------------------------	--------------------------------	----------------------------------

N-Data	Y ear M in	Y ear Max	method	Sample Locations	
71071	2005	2011	Braun Blanquet	94	

Table 38: Miami-Dade County DERM Benthic Habitat Monitoring Program - Program 4018

N-Data	Y ear M in	Y ear Max	method	Sample Locations
$\begin{array}{r}17330\\966\end{array}$	$1999 \\ 1999$		Braun Blanquet Percent Cover	$\frac{365}{232}$

Table 39: The South Florida Fisheries Habitat Assessment Program (FHAP) - Program 4049

-	N-Data	YearMin	YearMax	method	Sample Locations
-	18891	2005	2008	Braun Blanquet	273

Table 40: North Biscayne Bay Seagrass Loss Monitoring Program - Program 5027

N-Data	Y ear Min	Y ear Max	method	Sample Locations
5414 5457	$2018 \\ 2018$		Braun Blanquet Percent Cover	31 31
0407	2018	2022	Fercent Cover	31

Median percent cover

Biscayne Bay Aquatic Preserve

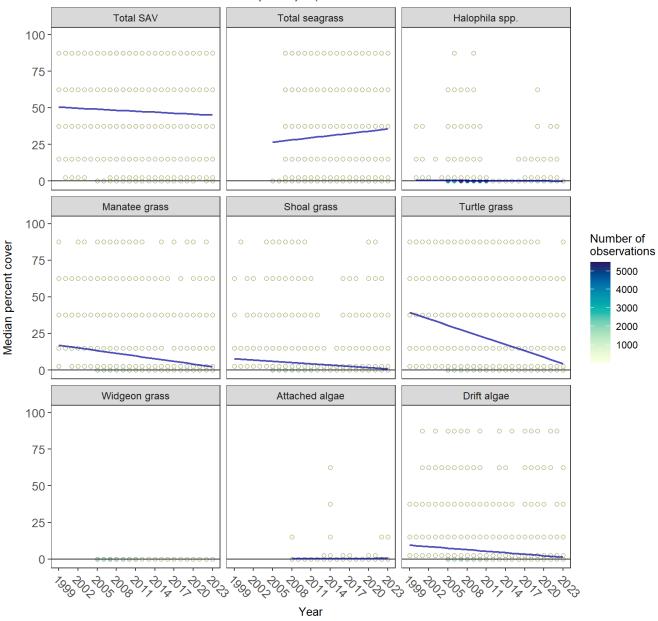


Figure 34: Trends in median percent cover for various seagrass species in Biscayne Bay Aquatic Preserve

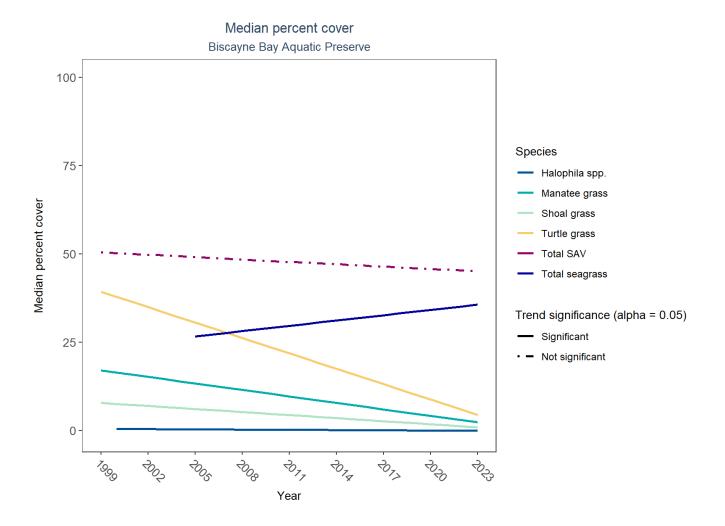


Figure 35: Trends in median percent cover for various seagrass species in Biscayne Bay Aquatic Preserve - simplified

CommonName	Trend Significance (0.05)	Period of Record	LME-Intercept	$LME ext{-}Slope$	p
Attached algae	Significantly increasing trend	2008 - 2023	-0.2513798	0.0221077	0.0410380
Drift algae	Significantly decreasing trend	1999 - 2023	11.2382137	-0.3433918	0.000002
Shoal grass	Significantly decreasing trend	1999 - 2023	9.2639104	-0.2869642	0.0000005
Halophila spp.	Significantly decreasing trend	2000 - 2023	0.5904383	-0.0219981	0.0249565
Widgeon grass	Model did not fit the available data	2005 - 2023	-	-	-
Manatee grass	Significantly decreasing trend	1999 - 2023	20.0834243	-0.6125839	0.0000000
Turtle grass	Significantly decreasing trend	1999 - 2023	46.5547420	-1.4527012	0.0000000
Total SAV	No significant trend	1999 - 2023	51.5762974	-0.2246879	0.2445087
Total seagrass	Significantly increasing trend	2005 - 2023	21.1535181	0.4993106	0.0107801

Table 41: Percent Cover Trend Analysis for Biscayne Bay Aquatic Preserve

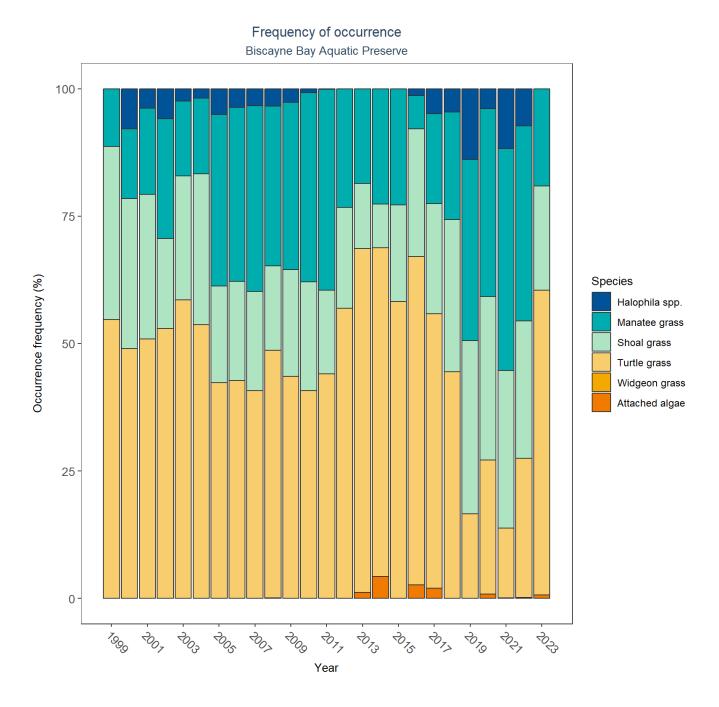
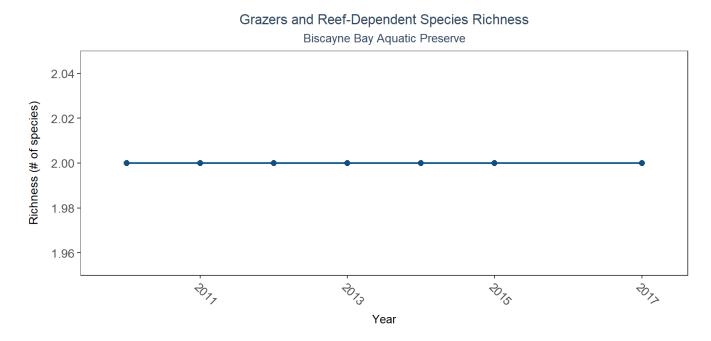



Figure 36: Frequency of occurrence for various seagrass species in Biscayne Bay Aquatic Preserve

Coral Reef

The data file used is: All_CORAL_Parameters-2024-Dec-08.txt Species Richness

Figure 37: Figure for Coral Species Richness in Biscayne Bay Aquatic Preserve

Table 42: Coral Species Richness

N-Years	EarliestYear	LatestYear	N- $Data$	Min	Max	Median	Mean	StDev	Y ear-MinRichness	Year-MaxRichness
7	2010	2017	19	2	2	2	2	0	2010	2010

References

- 1. Florida Department of Environmental Protection (DEP). Florida STORET / WIN. (2024).
- 2. Florida Department of Environmental Protection (DEP); Office of Resilience and Coastal Protection (RCP); Biscayne Bay Aquatic Preserves. North Biscayne Bay Seagrass Loss Water Quality Program . (2024).
- 3. National Oceanic and Atmospheric Administration (NOAA); Atlantic Oceanographic and Meterological Laboratory. Atlantic Oceanographic and Meteorological Laboratory (AOML) South Florida Program Synoptic Shipboard Surveys. (2024).
- 4. U.S. Environmental Protection Agency (EPA). EPA STOrage and RETrieval Data Warehouse (STORET)/WQX. (2023).
- 5. U.S. Environmental Protection Agency (EPA); Office of Research and Development. Environmental Monitoring Assessment Program. (2004).
- 6. U.S. Environmental Protection Agency (EPA); Office of Water; National Oceanic and Atmospheric Administration (NOAA); U.S. Geological Survey (USGS); U.S. Fish and Wildlife Service (USFWS); National Estuary Program (NEP); coastal states. National Aquatic Resource Surveys, National Coastal Condition Assessment. (2021).
- 7. Florida International University (FIU); Southeastern Environmental Research Program. SERC Water Quality Monitoring Network. (2008).
- 8. University of Florida (UF); Institute of Food and Agricultural Sciences. Florida LAKEWATCH Program. (2024).
- 9. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). The South Florida Fisheries Habitat Assessment Program (FHAP). (2024).
- 10. University of Florida; Florida Sea Grant; UF/IFAS Extension Miami-Dade County; Miami Waterkeeper . Biscayne Bay Water Watch . (2019).
- 11. City of Miami Beach. City of Miami Beach Water Monitoring. (2023).
- 12. National Oceanic and Atmospheric Administration (NOAA); Center for Coastal Monitoring and Assessment. National Status and Trends Mussel Watch. (2000).
- 13. Florida Fish and Wildlife Conservation Commission (FWC); Florida Fish and Wildlife Research Institute (FWRI). Harmful Algal Bloom Marine Observation Network. (2018).
- 14. U.S. Geological Survey (USGS). South Florida Seagrass Fish and Invertebrate Assessment Network. (2011).