The data used in this analysis is from the Export Standardized Tables in the SEACAR Data Discovery Interface (DDI). Documents and information available through the SEACAR DDI are owned by the data provider(s) and users are expected to provide appropriate credit following accepted citation formats. Users are encouraged to access data to maximize utilization of gained knowledge, reducing redundant research and facilitating partnerships and scientific innovation.
With respect to documents and information available from SEACAR DDI, neither the State of Florida nor the Florida Department of Environmental Protection makes any warranty, expressed or implied, including the warranties of merchantability and fitness for a particular purpose arising out of the use or inability to use the data, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
This report was funded in part, through a grant agreement from the Florida Department of Environmental Protection, Florida Coastal Management Program, by a grant provided by the Office for Coastal Management under the Coastal Zone Management Act of 1972, as amended, National Oceanic and Atmospheric Administration. The views, statements, findings, conclusions and recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the State of Florida, NOAA or any of their sub agencies.
Published: 2025-10-08
Threshold filters, following the guidance of Florida Department of Environmental Protection’s (FDEP) Division of Environmental Assessment and Restoration (DEAR) are used to exclude specific results values from the SEACAR Analysis. Based on the threshold filters, Quality Assurance / Quality Control (QAQC) Flags are inserted into the SEACAR_QAQCFlagCode and SEACAR_QAQC_Description columns of the export data. The Include column indicates whether the QAQC Flag will also indicate that data are excluded from analysis. No data are excluded from the data export, but the analysis scripts can use the Include column to exclude data (1 to include, 0 to exclude).
| Parameter Name | Units | Low Threshold | High Threshold |
|---|---|---|---|
| Dissolved Oxygen | mg/L | -0.000001 | 50 |
| Dissolved Oxygen Saturation | % | -0.000001 | 500 |
| Salinity | ppt | -0.000001 | 70 |
| Turbidity | NTU | -0.000001 | 4000 |
| Water Temperature | Degrees C | -5.000000 | 45 |
| pH | None | 2.000000 | 14 |
| Parameter Name | Units | Low Threshold | High Threshold |
|---|---|---|---|
| Ammonia, Un-ionized (NH3) | mg/L | - | - |
| Ammonium, Filtered (NH4) | mg/L | - | - |
| Chlorophyll a, Corrected for Pheophytin | ug/L | - | - |
| Chlorophyll a, Uncorrected for Pheophytin | ug/L | - | - |
| Colored Dissolved Organic Matter | PCU | - | - |
| Dissolved Oxygen | mg/L | -0.000001 | 25 |
| Dissolved Oxygen Saturation | % | -0.000001 | 310 |
| Fluorescent Dissolved Organic Matter | QSE | - | - |
| Light Extinction Coefficient | m^-1 | - | - |
| NO2+3, Filtered | mg/L | - | - |
| Nitrate (NO3) | mg/L | - | - |
| Nitrite (NO2) | mg/L | - | - |
| Nitrogen, organic | mg/L | - | - |
| Phosphate, Filtered (PO4) | mg/L | - | - |
| Salinity | ppt | -0.000001 | 70 |
| Secchi Depth | m | 0.000001 | 50 |
| Specific Conductivity | mS/cm | 0.005000 | 100 |
| Total Kjeldahl Nitrogen | mg/L | - | - |
| Total Nitrogen | mg/L | - | - |
| Total Nitrogen | mg/L | - | - |
| Total Phosphorus | mg/L | - | - |
| Total Suspended Solids | mg/L | - | - |
| Turbidity | NTU | - | - |
| Water Temperature | Degrees C | 3.000000 | 40 |
| pH | None | 2.000000 | 13 |
| SEACAR QAQC Description | Include | SEACAR QAQCFlagCode |
|---|---|---|
| Exceeds maximum threshold | 0 | 2Q |
| Below minimum threshold | 0 | 4Q |
| Within threshold tolerance | 1 | 6Q |
| No defined thresholds for this parameter | 1 | 7Q |
Value qualifier codes included within the data are used to exclude certain results from the analysis. The data are retained in the data export files, but the analysis uses the Include column to filter the results.
STORET and WIN value qualifier codes
Value qualifier codes from STORET and WIN data are examined with the database and used to populate the Include column in data exports.
| Qualifier Source | Value Qualifier | Include | MDL | Description |
|---|---|---|---|---|
| STORET-WIN | H | 0 | 0 | Value based on field kit determination; results may not be accurate |
| STORET-WIN | J | 0 | 0 | Estimated value |
| STORET-WIN | V | 0 | 0 | Analyte was detected at or above method detection limit |
| STORET-WIN | Y | 0 | 0 | Lab analysis from an improperly preserved sample; data may be inaccurate |
Discrete Water Quality Value Qualifiers
The following value qualifiers are highlighted in the Discrete Water Quality section of this report. An exception is made for Program 476 - Charlotte Harbor Estuaries Volunteer Water Quality Monitoring Network and data flagged with Value Qualifier H are included for this program only.
H - Value based on field kit determiniation; results may not be accurate. This code shall be used if a field screening test (e.g., field gas chromatograph data, immunoassay, or vendor-supplied field kit) was used to generate the value and the field kit or method has not been recognized by the Department as equivalent to laboratory methods.
I - The reported value is greater than or equal to the laboratory method detection limit but less than the laboratory practical quantitation limit.
Q - Sample held beyond the accepted holding time. This code shall be used if the value is derived from a sample that was prepared or analyzed after the approved holding time restrictions for sample preparation or analysis.
S - Secchi disk visible to bottom of waterbody. The value reported is the depth of the waterbody at the location of the Secchi disk measurement.
U - Indicates that the compound was analyzed for but not detected. This symbol shall be used to indicate that the specified component was not detected. The value associated with the qualifier shall be the laboratory method detection limit. Unless requested by the client, less than the method detection limit values shall not be reported
Systemwide Monitoring Program (SWMP) value qualifier codes
Value qualifier codes from the SWMP continuous program are examined with the database and used to populate the Include column in data exports. SWMP Qualifier Codes are indicated by QualifierSource=SWMP.
| Qualifier Source | Value Qualifier | Include | Description |
|---|---|---|---|
| SWMP | -1 | 1 | Optional parameter not collected |
| SWMP | -2 | 0 | Missing data |
| SWMP | -3 | 0 | Data rejected due to QA/QC |
| SWMP | -4 | 0 | Outside low sensor range |
| SWMP | -5 | 0 | Outside high sensor range |
| SWMP | 0 | 1 | Passed initial QA/QC checks |
| SWMP | 1 | 0 | Suspect data |
| SWMP | 2 | 1 | Reserved for future use |
| SWMP | 3 | 1 | Calculated data: non-vented depth/level sensorcorrection for changes in barometric pressure |
| SWMP | 4 | 1 | Historical: Pre-auto QA/QC |
| SWMP | 5 | 1 | Corrected data |
The water column habitat extends from the water’s surface to the bottom sediments, and it’s where fish, dolphins, crabs and people swim! So much life makes its home in the water column that the health of marine and coastal ecosystems, as well as human economies, depend on the condition of this vulnerable habitat. Local patterns of rainfall, temperature, winds and currents can rapidly change the condition of the water column, while global influences such as El Niño/La Niña, large-scale fluctuation in sea temperatures and climate change can have long-term effects. Inputs from the prosperity of our day-to-day lives including farming, mining and forestry, and emissions from power generation, automobiles and water treatment can also alter the health of the water column. Acting alone or together, each input can have complex and lasting effects on habitats and ecosystems.
SEACAR evaluates water column health with several essential parameters.
These include nutrient surveys of nitrogen and phosphorus, and water
quality assessments of salinity, dissolved oxygen, pH, and water
temperature. Water clarity is evaluated with Secchi depth, turbidity,
levels of chlorophyll a, total suspended solids, and colored dissolved
organic matter. Additionally, the richness of nekton is indicated by the
abundance of free-swimming fishes and macroinvertebrates like crabs and
shrimps.
Indicators must have a minimum of five to ten years, depending on the habitat, of data within the geographic range of the analysis to be included in the analysis. Ten years of data are required for discrete parameters, and five years of data are required for continuous parameters. If there are insufficient years of data, the number of years of data available will be noted and labeled as “insufficient data to conduct analysis”. Further, for the preferred Seasonal Kendall-Tau test, there must be data from at least two months in common across at least two consecutive years within the RCP managed area being analyzed. Values that pass both of these tests will be included in the analysis and be labeled as Use_In_Analysis = TRUE. Any that fail either test will be excluded from the analyses and labeled as Use_In_Analysis = FALSE. The points for all Water Column plots displayed in this section are monthly averages. Trend significance will be denoted as “Significant Trend” (when p < 0.05), or “Non-significant Trend” (when p >= 0.05). Any parameters with insufficient data to perform Seasonal Kendall-Tau test will have their monthly averages plotted without a corresponding trend line.
The following files were used in the discrete analysis:
Combined_WQ_WC_NUT_Chlorophyll_a_corrected_for_pheophytin-2025-Sep-04.txt
Combined_WQ_WC_NUT_Chlorophyll_a_uncorrected_for_pheophytin-2025-Sep-04.txt
Combined_WQ_WC_NUT_Colored_dissolved_organic_matter_CDOM-2025-Sep-04.txt
Combined_WQ_WC_NUT_Dissolved_Oxygen-2025-Sep-04.txt
Combined_WQ_WC_NUT_Dissolved_Oxygen_Saturation-2025-Sep-04.txt
Combined_WQ_WC_NUT_pH-2025-Sep-04.txt
Combined_WQ_WC_NUT_Salinity-2025-Sep-04.txt
Combined_WQ_WC_NUT_Secchi_Depth-2025-Sep-04.txt
Combined_WQ_WC_NUT_Total_Nitrogen-2025-Sep-04.txt
Combined_WQ_WC_NUT_Total_Phosphorus-2025-Sep-04.txt
Combined_WQ_WC_NUT_Total_Suspended_Solids_TSS-2025-Sep-04.txt
Combined_WQ_WC_NUT_Turbidity-2025-Sep-04.txt
Combined_WQ_WC_NUT_Water_Temperature-2025-Sep-04.txt
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Lab | Significantly increasing trend | 9193 | 27 | 1999 - 2025 | 7.7 | 0.3418 | 4.0138 | 0.3249 | 0 |
Monthly average chlorophyll a, corrected for pheophytin, increased by 0.32 µg/L per year, indicating a decrease in water clarity.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 355 | 8149 | 2002 | 2025 |
| 5002 | 1162 | 1999 | 2025 |
Program names:
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Lab | Significantly increasing trend | 4903 | 25 | 2000 - 2025 | 10 | 0.1977 | 6.2211 | 0.3189 | 0 |
Monthly average chlorophyll a, uncorrected for pheophytin, increased by 0.32 µg/L per year, indicating a decrease in water clarity.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 355 | 4596 | 2007 | 2025 |
| 5002 | 385 | 2007 | 2025 |
| 514 | 85 | 2007 | 2008 |
| 103 | 17 | 2000 | 2019 |
| 118 | 10 | 2000 | 2010 |
| 115 | 6 | 2000 | 2004 |
Program names:
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
115 - Environmental Monitoring Assessment Program4
118 - National Aquatic Resource Surveys, National Coastal
Condition Assessment5
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
514 - Florida LAKEWATCH Program6
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Lab | Significantly increasing trend | 180 | 13 | 2007 - 2025 | 22 | 0.1459 | 9.6302 | 1.98 | 0.0133 |
Monthly average colored dissolved organic matter increased by 1.98 PCU per year, indicating a decrease in water clarity.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 5002 | 160 | 2017 | 2025 |
| 514 | 26 | 2007 | 2008 |
| 103 | 7 | 2009 | 2019 |
Program names:
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
514 - Florida LAKEWATCH Program6
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Field | No significant trend | 83315 | 34 | 1992 - 2025 | 7.5 | -0.0692 | 7.665 | -0.0079 | 0.0582 |
Dissolved oxygen showed no detectable trend between 1992 and 2025.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 69 | 43854 | 1998 | 2024 |
| 5002 | 32111 | 1995 | 2025 |
| 129 | 4028 | 2000 | 2024 |
| 355 | 3843 | 2003 | 2025 |
| 95 | 410 | 1995 | 2018 |
| 557 | 222 | 2006 | 2023 |
| 118 | 78 | 2000 | 2020 |
| 103 | 34 | 2014 | 2019 |
| 115 | 28 | 1992 | 2004 |
| 119 | 14 | 1994 | 1994 |
| 5071 | 4 | 2017 | 2017 |
Program names:
69 - Fisheries-Independent Monitoring (FIM) Program7
95 - Harmful Algal Bloom Marine Observation Network8
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
115 - Environmental Monitoring Assessment Program4
118 - National Aquatic Resource Surveys, National Coastal
Condition Assessment5
119 - National Status and Trends Bioeffects program9
129 - Apalachicola National Estuarine Research Reserve Juvenile
Fish and Benthic Macroinvertebrate Monitoring10
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
557 - Central Panhandle Aquatic Preserves Seagrass
Monitoring11
5002 - Florida STORET / WIN2
5071 - Oyster shell heights and taxonomic diversity in
2015-2017 among previously documented oiled and non-oiled reefs in
Louisiana, Alabama, and the Florida panhandle12
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Field | No significant trend | 7037 | 26 | 2000 - 2025 | 91.5 | -0.0551 | 90.4781 | -0.09 | 0.1842 |
Dissolved oxygen saturation showed no detectable trend between 2000 and 2025.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 129 | 4010 | 2000 | 2024 |
| 355 | 2492 | 2003 | 2023 |
| 5002 | 574 | 2003 | 2025 |
Program names:
129 - Apalachicola National Estuarine Research Reserve
Juvenile Fish and Benthic Macroinvertebrate Monitoring10
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Field | Significantly decreasing trend | 67538 | 35 | 1964 - 2025 | 7.98 | -0.3282 | 8.2842 | -0.0099 | 0 |
Monthly average pH decreased by 0.01 pH units per year.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 69 | 43994 | 1998 | 2024 |
| 5002 | 19248 | 1995 | 2025 |
| 355 | 2618 | 2011 | 2025 |
| 129 | 2321 | 2000 | 2024 |
| 95 | 305 | 1964 | 2018 |
| 557 | 209 | 2006 | 2023 |
| 558 | 38 | 2008 | 2013 |
| 103 | 29 | 2014 | 2019 |
| 115 | 28 | 1992 | 2004 |
Program names:
69 - Fisheries-Independent Monitoring (FIM) Program7
95 - Harmful Algal Bloom Marine Observation Network8
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
115 - Environmental Monitoring Assessment Program4
129 - Apalachicola National Estuarine Research Reserve Juvenile
Fish and Benthic Macroinvertebrate Monitoring10
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
557 - Central Panhandle Aquatic Preserves Seagrass
Monitoring11
558 - Franklin County Coastal Waters Seagrass Monitoring13
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| All | Significantly decreasing trend | 96041 | 36 | 1964 - 2024 | 16.8 | -0.1809 | 21.3048 | -0.1161 | 0 |
Monthly average salinity decreased by 0.12 ppt per year.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 69 | 44205 | 1998 | 2024 |
| 5002 | 43876 | 1995 | 2024 |
| 129 | 4040 | 2000 | 2024 |
| 355 | 3721 | 2003 | 2024 |
| 95 | 586 | 1964 | 2018 |
| 4044 | 280 | 2007 | 2023 |
| 557 | 222 | 2006 | 2023 |
| 558 | 132 | 2008 | 2014 |
| 118 | 79 | 2015 | 2020 |
| 456 | 63 | 2005 | 2015 |
| 115 | 28 | 1992 | 2004 |
| 119 | 14 | 1994 | 1994 |
| 5071 | 4 | 2017 | 2017 |
Program names:
69 - Fisheries-Independent Monitoring (FIM) Program7
95 - Harmful Algal Bloom Marine Observation Network8
115 - Environmental Monitoring Assessment Program4
118 - National Aquatic Resource Surveys, National Coastal
Condition Assessment5
119 - National Status and Trends Bioeffects program9
129 - Apalachicola National Estuarine Research Reserve Juvenile
Fish and Benthic Macroinvertebrate Monitoring10
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
456 - Oyster Sentinel14
557 - Central Panhandle Aquatic Preserves Seagrass
Monitoring11
558 - Franklin County Coastal Waters Seagrass Monitoring13
4044 - NRDA Oyster Cultch Recovery Project15
5002 - Florida STORET / WIN2
5071 - Oyster shell heights and taxonomic diversity in
2015-2017 among previously documented oiled and non-oiled reefs in
Louisiana, Alabama, and the Florida panhandle12
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Field | Significantly increasing trend | 47555 | 31 | 1992 - 2025 | -0.8 | 0.1862 | -0.9943 | 0.0048 | 0 |
Monthly average Secchi depth became shallower by less than 0.01 m per year, indicating a decrease in water clarity.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 69 | 43709 | 1998 | 2024 |
| 129 | 1997 | 2000 | 2024 |
| 355 | 952 | 2011 | 2019 |
| 5002 | 487 | 2003 | 2025 |
| 558 | 188 | 2008 | 2017 |
| 557 | 128 | 2006 | 2023 |
| 514 | 80 | 2007 | 2008 |
| 115 | 10 | 1992 | 2004 |
| 103 | 6 | 2015 | 2015 |
Program names:
69 - Fisheries-Independent Monitoring (FIM) Program7
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
115 - Environmental Monitoring Assessment Program4
129 - Apalachicola National Estuarine Research Reserve Juvenile
Fish and Benthic Macroinvertebrate Monitoring10
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
514 - Florida LAKEWATCH Program6
557 - Central Panhandle Aquatic Preserves Seagrass
Monitoring11
558 - Franklin County Coastal Waters Seagrass Monitoring13
5002 - Florida STORET / WIN2
Total Nitrogen Calculation:
The logic for calculated Total Nitrogen was provided by Kevin O’Donnell and colleagues at FDEP (with the help of Jay Silvanima, Watershed Monitoring Section). The following logic is used, in this order, based on the availability of specific nitrogen components.
Additional Information:
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Lab | No significant trend | 4344 | 29 | 1992 - 2025 | 0.63 | -0.0717 | 0.7001 | -0.002 | 0.0911 |
Total nitrogen showed no detectable trend between 1992 and 2025.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 355 | 3207 | 2013 | 2025 |
| 5002 | 1048 | 1992 | 2025 |
| 514 | 83 | 2007 | 2008 |
| 103 | 18 | 2000 | 2006 |
| 115 | 6 | 2000 | 2004 |
Program names:
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
115 - Environmental Monitoring Assessment Program4
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
514 - Florida LAKEWATCH Program6
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Lab | Significantly decreasing trend | 4692 | 29 | 1992 - 2025 | 0.031 | -0.0996 | 0.0352 | -0.0002 | 0.014 |
Monthly average total phosphorus decreased by less than 0.01 mg/L per year.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 355 | 3519 | 2013 | 2025 |
| 5002 | 1180 | 1992 | 2025 |
| 514 | 83 | 2007 | 2008 |
| 103 | 24 | 2000 | 2015 |
| 115 | 6 | 2000 | 2004 |
Program names:
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
115 - Environmental Monitoring Assessment Program4
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
514 - Florida LAKEWATCH Program6
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Lab | Significantly decreasing trend | 4183 | 29 | 1992 - 2025 | 10 | -0.1782 | 14.9479 | -0.1667 | 0 |
Monthly average total suspended solids decreased by 0.17 mg/L per year, indicating an increase in water clarity.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 355 | 3645 | 2013 | 2025 |
| 5002 | 739 | 1992 | 2025 |
| 103 | 7 | 2009 | 2019 |
Program names:
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Lab | Significantly increasing trend | 22988 | 32 | 1992 - 2025 | 5.1 | 0.2687 | 4.9 | 0.1673 | 0 |
Monthly average turbidity increased by 0.17 NTU per year, indicating a decrease in water clarity.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 5002 | 22983 | 1992 | 2025 |
| 129 | 2325 | 2000 | 2024 |
| 355 | 1833 | 2004 | 2019 |
| 4044 | 112 | 2021 | 2023 |
| 557 | 78 | 2022 | 2023 |
| 103 | 10 | 2005 | 2019 |
Program names:
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
129 - Apalachicola National Estuarine Research Reserve Juvenile
Fish and Benthic Macroinvertebrate Monitoring10
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
557 - Central Panhandle Aquatic Preserves Seagrass
Monitoring11
4044 - NRDA Oyster Cultch Recovery Project15
5002 - Florida STORET / WIN2
Seasonal Kendall-Tau Trend Analysis
| Activity Type | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| Field | Significantly increasing trend | 96337 | 37 | 1964 - 2025 | 23.4 | 0.1293 | 20.8468 | 0.0212 | 0.0004 |
Monthly average water temperature increased by 0.02°C per year.
| ProgramID | N_Data | YearMin | YearMax |
|---|---|---|---|
| 5002 | 44379 | 1995 | 2025 |
| 69 | 44343 | 1998 | 2024 |
| 129 | 4033 | 2000 | 2024 |
| 355 | 3847 | 2003 | 2025 |
| 95 | 537 | 1964 | 2018 |
| 557 | 222 | 2006 | 2023 |
| 558 | 146 | 2008 | 2017 |
| 456 | 63 | 2005 | 2015 |
| 115 | 28 | 1992 | 2004 |
| 119 | 14 | 1994 | 1994 |
| 103 | 5 | 2014 | 2019 |
| 5071 | 4 | 2017 | 2017 |
Program names:
69 - Fisheries-Independent Monitoring (FIM) Program7
95 - Harmful Algal Bloom Marine Observation Network8
103 - EPA STOrage and RETrieval Data Warehouse
(STORET)/WQX3
115 - Environmental Monitoring Assessment Program4
119 - National Status and Trends Bioeffects program9
129 - Apalachicola National Estuarine Research Reserve Juvenile
Fish and Benthic Macroinvertebrate Monitoring10
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
456 - Oyster Sentinel14
557 - Central Panhandle Aquatic Preserves Seagrass
Monitoring11
558 - Franklin County Coastal Waters Seagrass Monitoring13
5002 - Florida STORET / WIN2
5071 - Oyster shell heights and taxonomic diversity in
2015-2017 among previously documented oiled and non-oiled reefs in
Louisiana, Alabama, and the Florida panhandle12
The following files were used in the continuous analysis:
Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_NW-2025-Sep-19.txt
Combined_WQ_WC_NUT_cont_Dissolved_Oxygen_Saturation_NW-2025-Sep-19.txt
Combined_WQ_WC_NUT_cont_pH_NW-2025-Sep-19.txt
Combined_WQ_WC_NUT_cont_Salinity_NW-2025-Sep-19.txt
Combined_WQ_WC_NUT_cont_Turbidity_NW-2025-Sep-19.txt
Combined_WQ_WC_NUT_cont_Water_Temperature_NW-2025-Sep-19.txt
Continuous monitoring locations in Apalachicola National Estuarine Research Reserve
| ProgramID | ProgramLocationID | Years of Data | Use in Analysis | Parameters |
|---|---|---|---|---|
| 5 | APCF1 | 21 | TRUE | TempW |
| 355 | apabpwq | 6 | TRUE | DO , DOS , pH , Sal , Turb , TempW |
| 355 | apacpwq | 24 | TRUE | DO , DOS , pH , Sal , Turb , TempW |
| 355 | apadbwq | 24 | TRUE | DO , DOS , pH , Sal , Turb , TempW |
| 355 | apaebwq | 29 | TRUE | Turb |
| 355 | apaebwq | 31 | TRUE | DO , DOS , pH , Sal , TempW |
| 355 | apaeswq | 30 | TRUE | Turb |
| 355 | apaeswq | 31 | TRUE | DO , DOS , pH , Sal , TempW |
| 355 | apalmwq | 10 | TRUE | DO , DOS , pH , Sal , Turb , TempW |
| 355 | apapcwq | 10 | TRUE | DO , DOS , pH , Sal , Turb , TempW |
Program names:
5 - National Data Buoy Center16
355 - Apalachicola National Estuarine Research Reserve
System-Wide Monitoring Program1
| Station | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| apapcwq | No significant trend | 289558 | 10 | 2016 - 2025 | 6.8 | -0.02 | 6.98 | -0.01 | 0.88 |
| apaeswq | Significantly decreasing trend | 733356 | 31 | 1995 - 2025 | 6.8 | -0.13 | 7.15 | -0.02 | 0.00 |
| apalmwq | Significantly decreasing trend | 275414 | 10 | 2016 - 2025 | 6.3 | -0.20 | 6.81 | -0.05 | 0.01 |
| apadbwq | Significantly decreasing trend | 641801 | 24 | 2002 - 2025 | 7.2 | -0.14 | 7.56 | -0.02 | 0.00 |
| apacpwq | Significantly increasing trend | 636748 | 24 | 2002 - 2025 | 7.1 | 0.11 | 7.05 | 0.01 | 0.01 |
| apaebwq | Significantly decreasing trend | 685348 | 31 | 1995 - 2025 | 6.8 | -0.30 | 7.58 | -0.06 | 0.00 |
| apabpwq | No significant trend | 170534 | 6 | 2020 - 2025 | 6.5 | 0.06 | 6.37 | 0.02 | 0.55 |
At one program location, monthly average dissolved oxygen increased by 0.01 mg/L per year. At four program locations, monthly average dissolved oxygen decreased between 0.02 and 0.06 mg/L per year. No detectable change in monthly average dissolved oxygen was observed at two locations.
| Station | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| apabpwq | No significant trend | 170534 | 6 | 2020 - 2025 | 76.2 | 0.17 | 73.51 | 0.47 | 0.12 |
| apalmwq | Significantly decreasing trend | 275950 | 10 | 2016 - 2025 | 74.6 | -0.21 | 77.22 | -0.64 | 0.01 |
| apaebwq | Significantly decreasing trend | 681137 | 31 | 1995 - 2025 | 84.5 | -0.26 | 91.05 | -0.67 | 0.00 |
| apacpwq | Significantly increasing trend | 638276 | 24 | 2002 - 2025 | 94.1 | 0.17 | 92.01 | 0.21 | 0.00 |
| apapcwq | No significant trend | 293014 | 10 | 2016 - 2025 | 93.9 | 0.03 | 93.21 | 0.10 | 0.64 |
| apaeswq | Significantly decreasing trend | 734556 | 31 | 1995 - 2025 | 84.2 | -0.09 | 85.63 | -0.21 | 0.02 |
| apadbwq | No significant trend | 645250 | 24 | 2002 - 2025 | 94.7 | -0.08 | 97.86 | -0.12 | 0.07 |
At one program location, monthly average dissolved oxygen saturation increased by 0.21% per year. At three program locations, monthly average dissolved oxygen saturation decreased between 0.21 and 0.67% per year. No detectable change in monthly average dissolved oxygen saturation was observed at three locations.
| Station | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| apaeswq | Significantly decreasing trend | 736038 | 31 | 1995 - 2025 | 7.5 | -0.12 | 7.58 | -0.01 | 0.00 |
| apadbwq | Significantly decreasing trend | 623515 | 24 | 2002 - 2025 | 8.0 | -0.13 | 8.06 | 0.00 | 0.00 |
| apalmwq | No significant trend | 283547 | 10 | 2016 - 2025 | 7.1 | -0.13 | 7.13 | -0.01 | 0.12 |
| apapcwq | Significantly decreasing trend | 289516 | 10 | 2016 - 2025 | 8.1 | -0.34 | 8.16 | -0.02 | 0.00 |
| apabpwq | No significant trend | 171276 | 6 | 2020 - 2025 | 7.1 | -0.05 | 7.07 | 0.00 | 0.84 |
| apaebwq | Significantly decreasing trend | 738964 | 31 | 1995 - 2025 | 7.6 | -0.12 | 7.66 | -0.01 | 0.00 |
| apacpwq | No significant trend | 636294 | 24 | 2002 - 2025 | 8.0 | -0.02 | 8.01 | 0.00 | 0.71 |
At four program locations, monthly average pH decreased between less than 0.01 and 0.02 pH units per year. No detectable change in monthly average pH was observed at three locations.
| Station | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| apalmwq | Significantly increasing trend | 291127 | 10 | 2016 - 2025 | 0.1 | 0.18 | 0.09 | 0.01 | 0.02 |
| apaeswq | No significant trend | 778085 | 31 | 1995 - 2025 | 7.3 | 0.04 | 6.97 | 0.02 | 0.30 |
| apapcwq | No significant trend | 291880 | 10 | 2016 - 2025 | 27.0 | 0.08 | 26.18 | 0.12 | 0.31 |
| apaebwq | No significant trend | 768387 | 31 | 1995 - 2025 | 9.7 | 0.03 | 9.21 | 0.02 | 0.46 |
| apacpwq | No significant trend | 652892 | 24 | 2002 - 2025 | 22.3 | 0.00 | 21.85 | 0.00 | 1.00 |
| apadbwq | No significant trend | 640362 | 24 | 2002 - 2025 | 22.2 | -0.03 | 22.03 | -0.03 | 0.52 |
| apabpwq | Significantly increasing trend | 173086 | 6 | 2020 - 2025 | 0.1 | 0.26 | 0.09 | 0.00 | 0.03 |
At two program locations, monthly average salinity increased by less than 0.01 ppt per year at one site and by 0.01 ppt per year at the other. No detectable change in monthly average salinity was observed at five locations.
| Station | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| apaeswq | Significantly decreasing trend | 721945 | 30 | 1996 - 2025 | 9 | -0.13 | 11.29 | -0.09 | 0.00 |
| apapcwq | No significant trend | 280348 | 10 | 2016 - 2025 | 7 | -0.05 | 10.67 | -0.08 | 0.55 |
| apalmwq | No significant trend | 261636 | 10 | 2016 - 2025 | 12 | 0.13 | 13.14 | 0.36 | 0.11 |
| apaebwq | Significantly decreasing trend | 656935 | 27 | 1997 - 2025 | 13 | -0.17 | 19.33 | -0.18 | 0.00 |
| apadbwq | No significant trend | 625446 | 24 | 2002 - 2025 | 10 | 0.06 | 16.00 | 0.07 | 0.22 |
| apacpwq | No significant trend | 649942 | 24 | 2002 - 2025 | 8 | -0.02 | 12.90 | -0.02 | 0.69 |
| apabpwq | No significant trend | 173080 | 6 | 2020 - 2025 | 11 | 0.05 | 11.31 | 0.11 | 0.74 |
At two program locations, monthly average turbidity decreased by 0.09 NTU per year at one site and by 0.18 NTU per year at the other. No detectable change in monthly average turbidity was observed at five locations.
| Station | Statistical Trend | Sample Count | Years with Data | Period of Record | Median | tau | Sen Intercept | Sen Slope | p |
|---|---|---|---|---|---|---|---|---|---|
| APCF1 | Significantly increasing trend | 1391382 | 21 | 2005 - 2025 | 23.3 | 0.12 | 22.98 | 0.04 | 0.03 |
| apaeswq | Significantly increasing trend | 787341 | 31 | 1995 - 2025 | 24.2 | 0.20 | 22.82 | 0.04 | 0.00 |
| apapcwq | No significant trend | 295378 | 10 | 2016 - 2025 | 23.4 | 0.00 | 23.62 | 0.00 | 0.98 |
| apalmwq | No significant trend | 293385 | 10 | 2016 - 2025 | 22.9 | 0.00 | 23.35 | 0.00 | 1.00 |
| apabpwq | No significant trend | 173086 | 6 | 2020 - 2025 | 22.8 | 0.20 | 22.24 | 0.24 | 0.07 |
| apadbwq | Significantly increasing trend | 666370 | 24 | 2002 - 2025 | 23.5 | 0.17 | 22.89 | 0.03 | 0.00 |
| apaebwq | Significantly increasing trend | 783431 | 31 | 1995 - 2025 | 24.3 | 0.16 | 23.03 | 0.02 | 0.00 |
| apacpwq | Significantly increasing trend | 691886 | 24 | 2002 - 2025 | 23.6 | 0.17 | 23.05 | 0.03 | 0.00 |
At five program locations, monthly average water temperature increased between 0.02 and 0.04°C per year. No detectable change in monthly average water temperature was observed at three locations.
The data file used is: All_SAV_Parameters-2025-Sep-04.txt
Submerged aquatic vegetation (SAV) refers to plants and plant-like macroalgae species that live entirely underwater. The two primary categories of SAV inhabiting Florida estuaries are benthic macroalgae and seagrasses. They often grow together in dense beds or meadows that carpet the seafloor. Macroalgae include multicellular species of green, red and brown algae that often live attached to the substrate by a holdfast. They tend to grow quickly and can tolerate relatively high nutrient levels, making them a threat to seagrasses and other benthic habitats in areas with poor water quality. In contrast, seagrasses are grass-like, vascular, flowering plants that are attached to the seafloor by extensive root systems. Seagrasses occur throughout the coastal areas of Florida, including protected bays and lagoons as well as deeper offshore waters on the continental shelf. Seagrasses have taken advantage of the broad, shallow shelf and clear water to produce two of the most extensive seagrass beds anywhere in continental North America.
Percent Cover measures the fraction of an area of seafloor that is covered by SAV, usually estimated by evaluating multiple small areas of seafloor. Percent cover is often estimated for total SAV, individual types of vegetation (seagrass, attached algae, drift algae) and individual species.
Frequency of Occurrence was calculated as the number of times a taxon was observed in a year divided by the number of sampling events, multiplied by 100. Analysis is conducted at the quadrat level and is inclusive of all quadrats (i.e., quadrats evaluated using Braun-Blanquet, modified Braun-Blanquet, and percent cover.”
Turtle grass (Thalassia testudinum) is the largest of the Florida seagrasses, with longer, thicker blades and deeper root structures than any of the other seagrasses. It is considered a climax seagrass species.
Shoal grass (Halodule wrightii) is an early colonizer of vegetated areas and usually grows in water too shallow for other species except widgeon grass. It can often tolerate larger salinity ranges than other seagrass species. Shoal grass is characterized by thin, flat blades, that are narrower than turtle grass blades.
Manatee grass (Syringodium filiforme) is easily recognizable because its leaves are thin and cylindrical instead of the flat, ribbon-like form shared by many other seagrass species. The leaves can grow up to half a meter in length. Manatee grass is usually found in mixed seagrass beds or small, dense monospecific patches.
Widgeon grass (Ruppia maritima) grows in both fresh and salt water and is widely distributed throughout Florida’s estuaries in less saline areas, particularly in inlets along the east coast. This species resembles shoal grass in certain environments but can be identified by the pointed tips of its leaves.
Three species of Halophila spp. are found in Florida - Star grass (Halophila engelmannii), Paddle grass (Halophila decipiens), and Johnson’s seagrass (Halophila johnsonii). These are smaller, more fragile seagrasses than other Florida species and are considered ephemeral. They grow along a single long rhizome, with short blades. These species are not well-studied, although surveys are underway to define their ecological roles.
Star grass, Paddle grass, and Johnson’s seagrass will be grouped together and listed as Halophila spp. in the following managed areas. This is because several surveys did not specify to the species level:
Banana River Aquatic Preserve
Indian River-Malabar to Vero Beach Aquatic Preserve
Indian River-Vero Beach to Ft. Pierce Aquatic Preserve
Jensen Beach to Jupiter Inlet Aquatic Preserve
Loxahatchee River-Lake Worth Creek Aquatic Preserve
Mosquito Lagoon Aquatic Preserve
Biscayne Bay Aquatic Preserve
Florida Keys National Marine Sanctuary
Click here to view spatio-temporal plots on GitHub.
Sampling locations by Program:
| ProgramID | N-Data | YearMin | YearMax | method | Sample Locations |
|---|---|---|---|---|---|
| 557 | 590 | 2008 | 2023 | Braun Blanquet | 35 |
| 997 | 79 | 2003 | 2003 | Braun Blanquet | 4 |
| 558 | 1402 | 2009 | 2017 | Percent Cover | 32 |
| 997 | 81 | 2003 | 2003 | Percent Cover | 4 |
Program names:
557 - Central Panhandle Aquatic Preserves Seagrass
Monitoring11
558 - Franklin County Coastal Waters Seagrass Monitoring13
997 - Apalachicola Bay Ephemeral SAV Monitoring17
997 - Apalachicola Bay Ephemeral SAV Monitoring17
| CommonName | Trend Significance (0.05) | Period of Record | LME-Intercept | LME-Slope | p |
|---|---|---|---|---|---|
| Drift algae | Significantly decreasing trend | 2003 - 2023 | 60.30780 | -1.8362646 | 0.0314670 |
| Shoal grass | No significant trend | 2008 - 2023 | 42.98086 | -0.2444919 | 0.7268447 |
| Star grass | Insufficient data to calculate trend | - | - | - | - |
| No grass in quadrat | Model did not fit the available data | 2003 - 2023 | - | - | - |
| Widgeon grass | Insufficient data to calculate trend | - | - | - | - |
| Manatee grass | Insufficient data to calculate trend | - | - | - | - |
An annual decrease in percent cover was observed for drift algae (-1.8%). No detectable change in percent cover was observed for shoal grass. Trends in percent cover could not be evaluated for manatee grass, star grass, and widgeon grass due to insufficient data.
The following parameters are available for Apalachicola National Estuarine Research Reserve within the SAV_WC_Report:
Colored Disolved Organic Matter
Chlorophyll a
Dissolved Oxygen
Dissolved Oxygen Saturation
pH
Salinity
Secchi Depth
Water Temperature
Total Nitrogen
Total Suspended Solids
Turbidity
Access the reports here: DRAFT_SAV_WC_Report_2024-11-20.pdf
The data file used is: All_NEKTON_Parameters-2025-Sep-04.txt
| Gear Type | Sample Count | Number of Years | Period of Record | Median N of Taxa | Mean N of Taxa |
|---|---|---|---|---|---|
| Trawl (4.8) | 5685 | 24 | 2000 - 2024 | 0.74 | 1.13 |
The median annual number of taxa was 0.74 based on 5,685 observations collected by 4.8-meter trawl between 2000 and 2024.
The data file used is: All_CW_Parameters-2025-Sep-04.txt
| Species Group | Sample Count | Number of Years | Period of Record | Median N of Taxa | Mean N of Taxa |
|---|---|---|---|---|---|
| Mangroves and associates | 4 | 2 | 2022 - 2023 | 1.0 | 1.00 |
| Marsh | 144 | 10 | 2014 - 2023 | 1.5 | 2.08 |
| Marsh succulents | 56 | 10 | 2014 - 2023 | 3.0 | 2.20 |
Between 2022 and 2023, the median annual number of species for mangroves and associates was 1 based on 4 observations. Between 2014 and 2023, the median annual number of species for marsh was 1.5 based on 144 observations. Between 2014 and 2023, the median annual number of species for marsh succulents was 3 based on 56 observations.
The data file used is: All_OYSTER_Parameters-2025-Sep-04.txt
| Shell Type | Habitat Type | Trend Status | Estimate | Standard Error | Credible Interval |
|---|---|---|---|---|---|
| Live Oysters | Natural | No significant change | 1.96 | 74.38 | 0.34 to -23.11 |
For natural reefs, density increased by an average of 2.03 oysters per square meter per year. For restored reefs, density decreased by an average of 11.42 oysters per square meter per year.
| Shell Type | Habitat Type | Trend Status | Estimate | Standard Error | Credible Interval |
|---|---|---|---|---|---|
| Live Oysters | Restored | No significant change | -11.95 | 59.04 | -0.03 to 77.11 |
For natural reefs, density increased by an average of 2.03 oysters per square meter per year. For restored reefs, density decreased by an average of 11.42 oysters per square meter per year.
| Shell Type | Habitat Type | Trend Status | Estimate | Standard Error | Credible Interval |
|---|---|---|---|---|---|
| Live Oysters | Natural | Significantly increasing trend | 1.69 | 9.76 | 0 to 5.27 |
For natural reefs, percent live cover increased by an average of 1.71% per year. For restored reefs, percent live cover decreased by an average of 1.53% per year.
| Shell Type | Habitat Type | Trend Status | Estimate | Standard Error | Credible Interval |
|---|---|---|---|---|---|
| Live Oysters | Restored | Significantly decreasing trend | -1.54 | 31.6 | -1.15 to -0.36 |
For natural reefs, percent live cover increased by an average of 1.71% per year. For restored reefs, percent live cover decreased by an average of 1.53% per year.
| Shell Type | SizeClass | Habitat Type | Trend Status | Estimate | Standard Error | Credible Interval |
|---|---|---|---|---|---|---|
| Dead Oyster Shells | Natural | - | - | - | - | |
| Dead Oyster Shells | >75mm | Natural | - | - | - | - |
| Dead Oyster Shells | 25-75mm | Natural | - | - | - | - |
| Live Oysters | Natural | - | - | - | - | |
| Live Oysters | >75mm | Natural | - | - | - | - |
| Live Oysters | 25-75mm | Natural | No significant change | -1.18 | 4.54 | -10.28 to 7.86 |
For natural reefs, annual average live oyster shell height in the 25-75mm size class decreased by 1.18 mm per year, and there was insufficient data to calculate a trend for live oysters in the ≥75mm size class. For restored reefs, a model could not be fitted for live oysters in either the 25-75mm or the ≥75mm size class. Models are not run on dead oyster shell measurements.
| Acanthostracion lactrophyrs3 | Fimbristylis spadicea | Pagurus longicarpus3 |
| Acanthostracion quadricornis3 | Fowlerichthys radiosus3 | Pagurus pollicaris3 |
| Acer rubrum | Fundulus grandis3 | Pagurus spp.3 |
| Acetabularia crenulata1 | Fundulus similis3 | Palaemon floridanus3 |
| Acetes americanus3 | Fundulus spp.3 | Palaemon mundusnovus3 |
| Achelous gibbesii3 | Galium tinctorium | Palaemon pugio3 |
| Achelous spinimanus3 | Gambusia holbrooki3 | Palaemon spp.3 |
| Achirus lineatus3 | Gerres cinereus3 | Palaemon vulgaris3 |
| Acipenser oxyrinchus3 | Gobiesox strumosus3 | Panicum repens |
| Agalinis maritima | Gobiidae spp.3 | Panicum virgatum |
| Albula vulpes3 | Gobioides broussonnetii3 | Panopeus herbstii3 |
| Alosa alabamae3 | Gobionellus oceanicus3 | Parablennius marmoreus3 |
| Alosa chrysochloris3 | Gobionellus spp.3 | Paraclinus marmoratus3 |
| Alosa spp.3 | Gobiosoma bosc3 | Paralichthyidae spp.3 |
| Alpheus armillatus3 | Gobiosoma longipala3 | Paralichthys albigutta3 |
| Alpheus estuariensis3 | Gobiosoma robustum3 | Paralichthys lethostigma3 |
| Alpheus heterochaelis3 | Gobiosoma spp.3 | Paralichthys spp.3 |
| Alpheus normanni3 | Gracilaria sp.1 | Paralichthys squamilentus3 |
| Alpheus spp.3 | Gunterichthys longipenis3 | Parapenaeus politus3 |
| Alternanthera philoxeroides | Gymnothorax saxicola3 | Paspalum vaginatum2 |
| Aluterus heudelotii3 | Gymnura micrura3 | Pattalias palustre |
| Aluterus schoepfii3 | Haemulon aurolineatum3 | Penaeidae3 |
| Aluterus scriptus3 | Haemulon plumierii3 | Penaeus aztecus3 |
| Aluterus spp.3 | Halichoeres bivittatus3 | Penaeus duorarum3 |
| Amaranthus cannabinus | Halodule wrightii1 | Penaeus setiferus3 |
| Ambidexter symmetricus3 | Halophila engelmannii1 | Penaeus sp.3 |
| Ameiurus catus3 | Harengula jaguana3 | Penaeus spp.3 |
| Ameiurus natalis3 | Hemicaranx amblyrhynchus3 | Peprilus burti3 |
| Ameiurus nebulosus3 | Hemipholis elongata | Peprilus paru3 |
| Ameiurus spp.3 | Hepatus epheliticus3 | Peprilus spp.3 |
| Amia calva3 | Heterandria formosa3 | Percidae spp.3 |
| Ammocrypta bifascia3 | Hexapanopeus angustifrons3 | Percina nigrofasciata3 |
| Ampelaster carolinianus | Hippocampus erectus3 | Persea palustris |
| Anarchopterus criniger3 | Hippocampus zosterae3 | Persephona mediterranea3 |
| Anchoa cubana3 | Hippolyte zostericola3 | Persicaria hydropiperoides |
| Anchoa hepsetus3 | Hydrilla verticillata | Petrolisthes armatus3 |
| Anchoa lyolepis3 | Hydrocotyle umbellata | Phragmites berlandieri |
| Anchoa mitchilli3 | Hypanus americanus3 | Physalis angustifolia |
| Anchoa sp.3 | Hypanus sabinus3 | Physostegia leptophylla |
| Anchoa spp.3 | Hypanus say3 | Pilumnus sayi3 |
| Ancylopsetta quadrocellata3 | Hypleurochilus caudovittatus3 | Pinnixa spp.3 |
| Anguilla rostrata3 | Hypleurochilus geminatus3 | Platybelone argalus3 |
| Anguilliformes spp.3 | Hypleurochilus spp.3 | Poaceae sp. |
| Aphredoderus sayanus3 | Hyporhamphus meeki3 | Pogonias cromis3 |
| Archosargus probatocephalus3 | Hyporhamphus spp.3 | Polygonum hydropiperoides |
| Ariopsis felis3 | Hypsoblennius hentz3 | Polypremum procumbens |
| Aristida sp. | Hypsoblennius ionthas3 | Pomatomus saltatrix3 |
| Astrapogon alutus3 | Ictaluridae spp.3 | Pomoxis nigromaculatus3 |
| Astropecten articulatus | Ictalurus furcatus3 | Pontederia cordata |
| Astroscopus ygraecum3 | Ictalurus punctatus3 | Porichthys plectrodon3 |
| Baccharis halimifolia | Ictalurus spp.3 | Portunidae spp.3 |
| Bagre marinus3 | Ilex vomitoria | Portunus sayi3 |
| Bairdiella chrysoura3 | Ipomoea sagittata | Potamogeton pusillus |
| Bare substrate | Iris virginica | Prionotus alatus3 |
| Bathygobius soporator3 | Iva frutescens | Prionotus longispinosus3 |
| Batis maritima2 | Juncus acuminatus2 | Prionotus rubio3 |
| Belonidae spp.3 | Juncus roemerianus2 | Prionotus scitulus3 |
| Belzebub faxoni3 | Juncus scirpoides2 | Prionotus spp.3 |
| Bidens mitis | Juncus spp.2 | Prionotus tribulus3 |
| Blenniidae spp.3 | Juncus validus2 | Processa hemphilli3 |
| Blutaparon vermiculare2 | Kosteletzkya pentacarpos | Ptilimnium capillaceum |
| Bolboschoenus robustus | Kyphosus sectatrix3 | Pylodictis olivaris3 |
| Borrichia frutescens | Lactophrys trigonus3 | Quercus marilandica |
| Bothidae spp.3 | Lactophrys triqueter3 | Quercus minima |
| Brachyura3 | Lagocephalus laevigatus3 | Quercus muehlenbergii |
| Brevoortia spp.3 | Lagodon rhomboides3 | Rachycentron canadum3 |
| Brotula barbata3 | Larimus fasciatus3 | Raja eglanteria3 |
| Brown algae1 | Latreutes parvulus3 | Remora remora3 |
| Busycon spp. | Leander tenuicornis3 | Rhinoptera bonasus3 |
| Calamus arctifrons3 | Legume sp. | Rhithropanopeus harrisii3 |
| Calamus leucosteus3 | Leiostomus xanthurus3 | Rhizophora mangle2 |
| Calamus spp.3 | Lepisosteus oculatus3 | Rhizoprionodon terraenovae3 |
| Calappa ocellata3 | Lepisosteus osseus3 | Rimapenaeus constrictus3 |
| Callinectes sapidus3 | Lepomis auritus3 | Rimapenaeus similis3 |
| Callinectes similis3 | Lepomis gulosus3 | Rimapenaeus spp.3 |
| Callinectes spp.3 | Lepomis macrochirus3 | Rumex verticillatus |
| Campsis radicans | Lepomis microlophus3 | Ruppia maritima1 |
| Carangidae spp.3 | Lepomis punctatus3 | Rypticus maculatus3 |
| Caranx crysos3 | Lepomis spp.3 | Sabal palmetto |
| Caranx hippos3 | Leptochela serratorbita3 | Sagittaria graminea |
| Caranx latus3 | Libinia dubia3 | Salicornia ambigua2 |
| Caranx ruber3 | Libinia emarginata3 | Salvinia spp. |
| Caranx spp.3 | Limonium carolinianum2 | Sardinella aurita3 |
| Carcharhinus limbatus3 | Limulus polyphemus | Saururus cernuus |
| Carex hyalinolepis | Lithadia granulosa3 | Scartella cristata3 |
| Carex joorii | Lobotes surinamensis3 | Schoenoplectus americanus |
| Carex sp. | Lolliguncula brevis3 | Schoenoplectus californicus |
| Carpiodes carpio3 | Lucania parva3 | Sciaenidae spp.3 |
| Carpiodes cyprinus3 | Ludwigia repens | Sciaenops ocellatus3 |
| Centella asiatica | Luidia alternata | Scomberomorus maculatus3 |
| Centrarchidae spp.3 | Luidia clathrata | Scorpaena brasiliensis3 |
| Centrarchus macropterus3 | Lutjanus analis3 | Scorpaena sp.3 |
| Centropristis ocyurus3 | Lutjanus campechanus3 | Selene setapinnis3 |
| Centropristis philadelphica3 | Lutjanus griseus3 | Selene vomer3 |
| Centropristis striata3 | Lutjanus sp.3 | Serraniculus pumilio3 |
| Cephalanthus occidentalis | Lutjanus spp.3 | Serranidae spp.3 |
| Ceratophyllum demersum | Lutjanus synagris3 | Serranus subligarius3 |
| Chaetodipterus faber3 | Lycopus virginicus | Sesbania punicea |
| Chara spp.1 | Lysmata wurdemanni3 | Sesbania vesicaria |
| Chasmodes saburrae3 | Lythrum lineare | Sesuvium portulacastrum2 |
| Chilomycterus schoepfii3 | Macrobrachium ohione3 | Setaria parviflora |
| Chloroscombrus chrysurus3 | Megalops atlanticus3 | Sicyonia brevirostris3 |
| Cicuta maculata | Melongena corona | Sicyonia dorsalis3 |
| Citharichthys macrops3 | Membras martinica3 | Sicyonia laevigata3 |
| Citharichthys sp.3 | Menidia beryllina3 | Sicyonia typica3 |
| Citharichthys spilopterus3 | Menidia sp.3 | Smilax auriculata |
| Citharichthys spp.3 | Menidia spp.3 | Smilax bona-nox |
| Cladium mariscus | Menippe mercenaria3 | Smilax walteri |
| Clibanarius vittatus3 | Menticirrhus americanus3 | Solidago sempervirens |
| Crinum americanum | Menticirrhus littoralis3 | Sparidae spp.3 |
| Ctenogobius boleosoma3 | Menticirrhus saxatilis3 | Spartina alterniflora2 |
| Ctenogobius shufeldti3 | Menticirrhus spp.3 | Spartina cynosuroides2 |
| Ctenogobius spp.3 | Metoporhaphis calcarata3 | Spartina patens2 |
| Ctenogobius stigmaticus3 | Microgobius carri3 | Sphoeroides nephelus3 |
| Ctenopharyngodon idella3 | Microgobius gulosus3 | Sphoeroides parvus3 |
| Cuapetes americanus3 | Microgobius microlepis3 | Sphoeroides spengleri3 |
| Cynoscion arenarius3 | Microgobius sp.3 | Sphoeroides spp.3 |
| Cynoscion nebulosus3 | Microgobius spp.3 | Sphyraena barracuda3 |
| Cynoscion nothus3 | Microgobius thalassinus3 | Sphyraena borealis3 |
| Cynoscion spp.3 | Microphis brachyurus3 | Sphyraena guachancho3 |
| Cyperaceae sp. | Micropogonias undulatus3 | Sphyraena spp.3 |
| Cyperus haspan | Micropterus salmoides3 | Sphyrna tiburo3 |
| Cyperus sp. | Mikania scandens | Sporobolus virginicus2 |
| Cyprinella venusta3 | Minytrema melanops3 | Squilla empusa |
| Cyprinidae spp.3 | Monacanthus ciliatus3 | Stellifer lanceolatus3 |
| Cyprinodon variegatus3 | Moreiradromia antillensis3 | Stenotomus caprinus3 |
| Cyprinus carpio3 | Morone chrysops x saxatilis3 | Stephanolepis hispida3 |
| Dasyatis sp.3 | Morone hybrid3 | Strongylura marina3 |
| Diapterus auratus3 | Morone saxatilis3 | Strongylura notata3 |
| Dichanthelium sp. | Morone spp.3 | Strongylura spp.3 |
| Diplectrum bivittatum3 | Moxostoma spp.3 | Strongylura timucu3 |
| Diplectrum formosum3 | Mugil cephalus3 | Suaeda linearis2 |
| Diplectrum spp.3 | Mugil curema3 | Syacium papillosum3 |
| Diplodus holbrookii3 | Mugil spp.3 | Symphurus parvus3 |
| Distichlis spicata2 | Muhlenbergia capillaris | Symphurus plagiusa3 |
| Dormitator maculatus3 | Mycteroperca microlepis3 | Symphyotrichum tenuifolium |
| Dorosoma cepedianum3 | Mycteroperca phenax3 | Syngnathidae spp.3 |
| Dorosoma petenense3 | Mycteroperca spp.3 | Syngnathus floridae3 |
| Dorosoma spp.3 | Myrica cerifera | Syngnathus louisianae3 |
| Drift algae1 | Myrophis punctatus3 | Syngnathus scovelli3 |
| Dyspanopeus texanus3 | Najas guadalupensis | Syngnathus spp.3 |
| Echeneis naucrates3 | Neopanope packardii3 | Syngnathus springeri3 |
| Echeneis neucratoides3 | Neverita duplicata | Synodus foetens3 |
| Echeneis spp.3 | Nicholsina usta3 | Synodus spp.3 |
| Echiophis punctifer3 | No fish | Syringodium filiforme1 |
| Edrastima uniflora | No grass in quadrat1 | Taxodium distichum |
| Eleocharis fallax | Notemigonus crysoleucas3 | Thor spp.3 |
| Eleotris amblyopsis3 | Notropis maculatus3 | Toxicodendron radicans |
| Elopidae3 | Notropis spp.3 | Tozeuma carolinense3 |
| Elopidae spp.3 | Oenothera simulans | Trachinotus carolinus3 |
| Elops saurus3 | Ogcocephalus corniger3 | Trachinotus falcatus3 |
| Elops smithi3 | Ogcocephalus cubifrons3 | Trichiurus lepturus3 |
| Elops spp.3 | Ogcocephalus pantostictus3 | Trinectes maculatus3 |
| Engraulidae spp.3 | Ogcocephalus radiatus3 | Tylosurus crocodilus3 |
| Enneacanthus gloriosus3 | Ogyrides alphaerostris3 | Tylosurus spp.3 |
| Epinephelus morio3 | Ogyrides hayi3 | Typha latifolia |
| Epinephelus spp.3 | Ogyrides sp.3 | Typha sp. |
| Erotelis smaragdus3 | Oligoplites saurus3 | Typhaceae |
| Etheostoma fusiforme3 | Ophichthidae3 | Unidentified fish3 |
| Etheostoma spp.3 | Ophichthus gomesii3 | Unidentified shrimp3 |
| Etheostoma swaini3 | Ophidion holbrookii3 | Urocaris longicaudata3 |
| Etropus crossotus3 | Ophidion josephi3 | Urophycis floridana3 |
| Etropus cyclosquamus3 | Ophioderma spp. | Urophycis regia3 |
| Etropus microstomus3 | Ophiothrix (Ophiothrix) angulata | Vallisneria americana |
| Etropus rimosus3 | Opisthonema oglinum3 | Vigna luteola |
| Etropus spp.3 | Opsanus beta3 | Vitta usnea |
| Eucinostomus argenteus3 | Opsopoeodus emiliae3 | Vokesinotus perrugatus |
| Eucinostomus gula3 | Orthopristis chrysoptera3 | Woody debris |
| Eucinostomus harengulus3 | Osmundastrum cinnamomeum | Xanthidae sp.3 |
| Eucinostomus spp.3 | Ovalipes floridanus3 | Xanthidae spp.3 |
| Eurypanopeus depressus3 | Ovalipes ocellatus3 | Xiphopenaeus kroyeri3 |
| Eustachys petraea | Ovalipes spp.3 | Zannichellia palustris |
| Filamentous algae1 | Pagurus annulipes3 | Acanthostracion lactrophyrs3 |
1 - Submerged Aquatic Vegetation, 2 - Coastal Wetlands, 3 - Nekton